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Abstract

Background: Behavioral therapies, such as electronic counseling and self-monitoring dispensed through mobile apps, have
been shown to improve blood pressure, but the results vary and long-term engagement is a challenge. Machine learning is a
rapidly advancing discipline that can be used to generate predictive and responsive models for the management and treatment of
chronic conditions and shows potential for meaningfully improving outcomes.

Objective: The objectives of this retrospective analysis were to examine the effect of a novel digital therapeutic on blood
pressure in adults with hypertension and to explore the ability of machine learning to predict participant completion of the
intervention.

Methods: Participants with hypertension, who engaged with the digital intervention for at least 2 weeks and had paired blood
pressure values, were identified from the intervention database. Participants were required to be ≥18 years old, reside in the United
States, and own a smartphone. The digital intervention offers personalized behavior therapy, including goal setting, skill building,
and self-monitoring. Participants reported blood pressure values at will, and changes were calculated using averages of baseline
and final values for each participant. Machine learning was used to generate a model of participants who would complete the
intervention. Random forest models were trained at days 1, 3, and 7 of the intervention, and the generalizability of the models
was assessed using leave-one-out cross-validation.

Results: The primary cohort comprised 172 participants with hypertension, having paired blood pressure values, who were
engaged with the intervention. Of the total, 86.1% participants were women, the mean age was 55.0 years (95% CI 53.7-56.2),
baseline systolic blood pressure was 138.9 mmHg (95% CI 136.6-141.3), and diastolic was 86.2 mmHg (95% CI 84.8-87.7).
Mean change was –11.5 mmHg for systolic blood pressure and –5.9 mmHg for diastolic blood pressure over a mean of 62.6 days
(P<.001). Among participants with stage 2 hypertension, mean change was –17.6 mmHg for systolic blood pressure and –8.8
mmHg for diastolic blood pressure. Changes in blood pressure remained significant in a mixed-effects model accounting for the
baseline systolic blood pressure, age, gender, and body mass index (P<.001). A total of 43% of the participants tracking their
blood pressure at 12 weeks achieved the 2017 American College of Cardiology/American Heart Association definition of blood
pressure control. The 7-day predictive model for intervention completion was trained on 427 participants, and the area under the
receiver operating characteristic curve was .78.

Conclusions: Reductions in blood pressure were observed in adults with hypertension who used the digital therapeutic. The
degree of blood pressure reduction was clinically meaningful and achieved rapidly by a majority of the studied participants.

JMIR Cardio 2019 | vol. 3 | iss. 1 | e13030 | p. 1http://cardio.jmir.org/2019/1/e13030/
(page number not for citation purposes)

Guthrie et alJMIR CARDIO

XSL•FO
RenderX

mailto:mark@bettertherapeutics.io
http://www.w3.org/Style/XSL
http://www.renderx.com/


Greater improvement was observed in participants with more severe hypertension at baseline. A successful proof of concept for
using machine learning to predict intervention completion was presented.

(JMIR Cardio 2019;3(1):e13030) doi: 10.2196/13030
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Introduction

High blood pressure (BP), or hypertension, is the leading
contributor of preventable death worldwide and based on the
2017 American College of Cardiology (ACC)/American Heart
Association (AHA) guideline, it is prevalent among 45.6% of
US adults [1]. This extraordinary prevalence is attributed, in
part, to the omnipresent detrimental diet and lifestyle behaviors
associated with hypertension [2,3].

The consequences of high BP have been appreciated since the
1930s, and an array of effective antihypertensive medications
have been available for decades [4]. However, only half of those
with hypertension have optimally controlled BP, and 16% have
poorly controlled hypertension despite taking three or more
antihypertensive medications [5,6].

In addition to pharmacotherapy, clinical guidelines in the United
States and worldwide call for the initiation of behavioral therapy
focused on lifestyle for all patients with hypertension, because
it is known that lifestyle changes can directly lower BP while
simultaneously improving other cardiovascular risk factors
without the side effects of pharmacotherapy [1,7]. However,
there is also widespread appreciation that the current health care
system is unable to deliver behavioral therapies that predictably
lead to sustained lifestyle changes among the massive volume
of patients who need it [8,9].

As a part of a global call to address a worsening pandemic,
technology companies have been asked to contribute innovative
solutions that enhance BP control and reduce the burden of care
on primary care systems [10,11]. In particular, digital
interventions designed to treat chronic diseases, known as digital
therapeutics, can be paired with remote monitoring devices to
create novel means of delivering effective and highly accessible
care. These same interventions can simultaneously monitor
outcomes, as recent evidence demonstrated the validity and
utility of BP monitoring at home [12,13].

There are numerous commercially available apps designed to
aid BP management, especially BP-tracking apps, but very few
of them are multicomponent behavioral interventions designed
to treat hypertension and have been clinically evaluated [14-17].
The widespread availability of mobile health apps, and the
difficulty patients and clinicians have in distinguishing between
them, warrants more rigorous study and vetting [18].

The use of machine learning, a branch of artificial intelligence
that aims to make sense of patterns within large datasets, offers
the potential to further increase the effectiveness of digital
interventions. For example, it can be used to predict the
likelihood of a specific clinical outcome based on an individual’s

unique pattern of use of the multiple components that make up
a digital intervention during the course of treatment. This
predictive ability holds great promise in developing interventions
that are precisely targeted to the individual for optimal
effectiveness. It has been argued that improving our ability to
target treatment to individual patients begins by identifying and
addressing unique subgroups through advanced analytic
techniques like machine learning and may be the best path
forward to enact precision medicine [19,20].

Mobile apps are well situated to use machine learning, because
they are continuously collecting engagement and biometric data
and can be programmed to change the delivery of treatment in
response to outputs of machine learning algorithms. Although
the application of machine learning to mobile apps holds great
promise, it has not been widely applied to mobile apps targeting
the root causes of hypertension.

The digital intervention assessed in this paper was developed
by Better Therapeutics LLC (San Francisco, CA), a developer
of prescription digital therapeutics for the treatment of
cardiometabolic diseases. The goal of this article is to provide
a retrospective analysis of the effectiveness of digital
therapeutics in delivering behavioral therapy to patients with
hypertension, resulting in a reduction of BP. In addition, a proof
of concept for the use of machine learning to predict intervention
completion in a manner that allows for personalized, real-time
treatment plan adjustments is presented.

Methods

Digital Intervention
The digital intervention integrates a mobile medical app that
delivers behavioral therapy with the support of a remote
multidisciplinary care team. The mobile app delivers a
personalized behavior change intervention including tools for
goal setting, skill building, self-monitoring, biometric tracking,
and behavioral feedback. The intervention is designed to support
the participant’s daily efforts to reduce BP and improve overall
cardiometabolic function by facilitating behavioral changes,
such as planning and self-monitoring, that increase physical
activity and change dietary pattern to one that is predominately
made up of whole grains, fruits, vegetables, beans, legumes,
nuts, and seeds. These targeted changes are consistent with
well-established clinical guidelines [1,7]. Further, the app uses
artificial intelligence to provide feedback and support during
the intervention to enhance adherence to behavioral therapy and
increase participants’ self-efficacy to make and sustain
behavioral changes. Use of the app is coupled with scheduled
person-to-person health coaching by phone over a 12-week
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treatment period. Program completion was defined as ongoing
use of the intervention in week 10 or later.

The app was designed for daily use, with a typical interaction
beginning in a conversational interface that prompts a participant
to report their progress toward individualized behavioral goals,
such as the number of plant-based meals and minutes of physical
activity completed that day as well as any biometrics, such as
BP or weight, that were recorded. The participant receives
feedback based on the data collected and is then prompted to
engage in one or more behavioral exercises. For example, they
may be prompted to respond to a question from their coach to
self-reflect on opportunities and barriers to meeting their weekly
goals or begin a skill-learning exercise that challenges the
participant to try a new method for preparing vegetables or a
different strategy for incorporating exercise into their day.

Intervention participants were recruited directly through
Facebook and employer-sponsored advertisements. The

intervention was advertised as a 12-week program for adults
who wanted to improve hypertension, type 2 diabetes, or
hyperlipidemia. All enrollees who self-identified as hypertensive
were provided the option to receive a free Omron 7 Series Upper
Arm Blood Pressure Monitor (Omron Healthcare, Inc, Kyoto,
Japan) for use throughout the intervention and to keep after the
study ended. The intervention was available to individuals at
no cost.

Intervention Participants
The intervention database was searched to identify participants
with a starting BP value in the hypertensive range (≥130/80
mmHg), as defined by the 2017 ACC/AHA guideline [1], as
well as participants with elevated BP who reported using
antihypertensive medication. From this group of participants,
analysis cohorts were identified based on engagement with the
intervention (Figure 1). The intervention days were counted
from day 0 (account created), with day 1 being the first full day
of access to the digital intervention.
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Figure 1. Participant flow chart. BP: blood pressure.

The Primary cohort included participants with hypertension,
who provided follow-up BP values at least 14 days after the
baseline. The Completed Intervention cohort included those
who showed activity in the app in or after week 10 of the
intervention. Participants were further categorized into the
Completed with Longer Tracking cohort if, in addition to
completing the intervention, their follow-up BP value was
reported on or after day 70 of the intervention. The criteria for
the analysis cohorts were defined prior to completing the
analysis in order to explore the relationship between app
engagement (Completed Intervention) and self-tracking
(Completed with Longer Tracking) at the primary end point of
changes in BP.

Data were identified by a unique numeric identification assigned
by the system at registration; exported data included no personal

identifiers. This retrospective analysis was approved and
overseen by the Quorum Review Institutional Review Board
[21], and a waiver of informed consent was granted for this
retrospective analysis.

Measures

Demographics
Participants eligible for enrollment were adults, aged 18 years
or older, were living in the United States, and had a smartphone
with Android or Apple operating system to access the
intervention app. Within the app, participants reported their age,
gender, height, weight, medical history, state of residence, and
current prescription medications.
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Blood Pressure
Participants recorded BP readings in the app at will. Each
reported measurement included a value for systolic BP (SBP),
diastolic BP (DBP), and date and time of measurement. Baseline
and follow-up values were calculated by taking an average of
all available values in 7-day intervals. Day 1 of the intervention
was set as the anchor day for the baseline interval, and all values
reported within the following 6 days were included in the mean.
The follow-up anchor date was set as the date of the last BP
value reported, and all values reported in the 6 days prior to the
anchor were included in the mean. The number of days between
the baseline and follow-up BP was considered the duration of
change. The mean change was calculated by subtracting the
mean baseline value from the mean follow-up value. BP
categorization was based on published guidelines (defining
elevated as 120-129/<80 mmHg, stage I hypertension as
130-139/80-89 mmHg, and stage II hypertension as ≥140/≥90
mmHg) [1].

Weight
In addition to reporting weight at the time of enrollment,
participants had the option to track their weight using their own
home scale and record it in the app at will. Body mass index
was calculated by dividing the weight in kilograms by the height
in meters squared.

Predictive Modeling
We used machine learning to generate a model to predict
whether someone would complete the intervention, applying
the same criteria as defined above for the Completed
Intervention cohort. A random forest model was trained on 427
participants with complete app use data available. The random
forest model was selected because it reduces overfitting of a
model by taking the average of many decision trees, which is
important in small data sets [22]. A supervised classification
algorithm was used, since the response variable Completed
Intervention, is binary.

The random forest model was trained with 250 trees and a
minimum of 3 samples per leaf node, as determined by
hyperparameter optimization. The model included 19 features

that can be grouped as follows: (1) Engagement: These features
were actions related to use of the intervention, such as the count
of plant-based meals logged, skill-building modules completed,
or health coaching calls completed. (2) Sociomarkers: These
were indicators of social conditions that an individual is exposed
to or surrounded by, which can be correlated with the presence
or severity of a health state, such as zone improvement plan
code or availability of health care [23]. Our model incorporated
the novel sociomarkers’ operating system (Android or Apple
operating system) and email domain (Gmail, Yahoo, Hotmail,
or Other), because we hypothesized that these sociomarkers
may have predictive power. (3) Biometrics: These included the
count of BP values reported, the baseline BP value, the count
of weight values reported, and the percentage of weight loss. A
list of all features included in the model is presented in Figure
2.

We trained random forest models on days 1, 3, and 7 of the
intervention, with day 1 being the first full day of intervention
engagement after the participant signs up. Development of
training models at differing time points from the start day
allowed us to explore the duration of engagement needed before
predictive capacity emerged. For each model, only the data
collected up to that day were used as features in the model. For
example, in the day 3 model, we only used the engagement
information collected in the first 3 days, and not beyond. For
each model, the final response variable was the same—whether
the patient completed the intervention. The training of the model
includes a series of decision trees that evaluates data from the
engagement features, sociomarkers, and biometrics, in relation
to the response variable of interest—intervention completion.

We assessed generalization performance of the model by using
leave-one-out cross-validation, which is a common technique
for assessing model performance in samples of this size [24-26].
To this end, we trained the model on N–1 samples of the data
and made a prediction on the one sample that was left out. This
produces “out of sample” predictions for all N samples. These
N predictions were pooled to compute various classification
metrics, like the receiver operator characteristic (ROC), the area
under the curve (AUC) of the ROC, and a confusion matrix of
true versus predicted labels [27].
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Figure 2. Shapley values illustrate which factors contribute most to an increased likelihood of completion (or noncompletion). Each dot represents the
value of one individual participant for the feature component listed on the Y-axis. The value is represented by color (high vs low value) and by placement
on the X-axis (amount of positive vs negative contribution to intervention completion). The feature list on the left is in order of contribution to the model
(most to least). OS: operating system; SBP: systolic blood pressure; DBP: diastolic blood pressure; BP: blood pressure; BMI: body mass index; SHAP:
Shapley Additive Explanation.

In addition, we used the Tree Shapley Additive Explanation
(SHAP) algorithm [28], an explainable machine learning
technique, on the random forest model to provide more
interpretable predictions for each participant incorporated in
the model. The Tree SHAP algorithm assigns each feature an
importance value for every prediction. Each prediction begins
at a base value, which is the expectation of the response variable
(in our case, a probability between 0 and 1). Then, the SHAP
values attribute to each feature the change in the expected model
prediction when conditioning on that feature. The sum of the
base value and all the additive feature attributions equal the
final prediction probability.

All machine learning model development was performed using
open-source packages in Python (Python Software Foundation,
Wilmington, DE). The packages include but are not limited to
Scikit-Learn, SHAP, Pandas, and Numpy.

Statistical Methods
Statistical analyses of changes in BP were performed using SAS
software, version 9.4 (SAS Institute, Inc, Cary, NC). Change
of continuous variables over time was analyzed using a
two-tailed paired Student t test with alpha set at .05 and
chi-square tests for differences in categorical variables. We used
mixed-effects modeling to test the effects of baseline body mass

index, baseline SBP, age, and gender on the mean change in
BP.

Results

Intervention Participants
We identified 172 participants with hypertension (baseline
BP≥130/80 mmHg or reported use of an antihypertensive
medication) who engaged with the intervention for at least 2
weeks, reported a follow-up BP value, and were included in the
Primary cohort. Demographics and baseline measurements for
each cohort are presented in Table 1. There were no statistical
differences in the baseline characteristics between those in the
primary cohort and those in the two subgroups, as described
above (ie, those who completed the intervention and those who
completed and had a longer BP-tracking duration).

Blood Pressure
In the Primary cohort, 75.0% (129/172) of participants had a
clinically meaningful improvement in BP (defined as a decrease
of ≥5 mmHg in SBP or ≥2.5 mmHg in DBP). The mean change
from baseline to last follow-up reported was –11.5 mmHg for
SBP and –5.9 mmHg for DBP, with a mean duration between
values of approximately 9 weeks (62.6 days). An improvement
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of one BP category, as defined by ACC/AHA clinical practice
guidelines [1], was seen in 51.7% (89/172) of the primary
cohort. The changes between the end values of SBP and DBP
were found to be significantly different from the corresponding
baseline values (P<.001). The difference remained significant
in the mixed-effects model accounting for the baseline SBP,
age, gender, and body mass index (P<.001). The percent weight
change was not found to correlate with changes in SBP (P=.53)
or DBP (P=.12). Table 2 presents the changes in BP for the
three analysis cohorts.

The mean duration between the baseline and final BP values
for the Completed Intervention cohort was 10 weeks, with 74.7%
(106/142) showing a meaningful improvement in BP and 22.5%
(32/142) achieving a normal BP (BP<120/80 mmHg). The mean
duration for the Completed with Longer Tracking cohort was
12.3 weeks, with 82.6% (71/86) of participants showing
meaningful improvement and 26.7% (23/86) ending the

intervention with BP in the normal range. The percentage of
participants with meaningful improvements in BP was higher
in this cohort than the Primary cohort (P=.02).

Figure 3 contrasts the improvements seen in participants with
stage I and stage II hypertension. Participants with stage I
hypertension (n=76) saw a decrease of 5.4 mmHg (95% CI –7.4
to –3.3) in SBP and a decrease of 3.8 mmHg (95% CI –5.3 to
–2.3) in DBP. Participants with stage II hypertension (n=84)
observed a larger decrease in BP values, with SBP decreasing
by 17.6 mmHg (95% CI –21.2 to –14.1) and DBP decreasing
by 8.8 mmHg (95% CI –11.3 to –6.4).

Mean weekly SBP values from the Completed with Longer
Tracking cohort were used to explore the rate of BP change
(Figure 4). Although the mean BP continued to decline
throughout the intervention period, the rate of decline was
approximately 5 times greater in the first 6 weeks than in the
following 6 weeks.

Table 1. Sample characteristics at baseline by intervention completion.

P valueaCompleted with longer tracking
(N=86)

Completed intervention
(N=142)

Primary cohort (N=172)Participant characteristics

.8755.1 (53.2-56.9)55.0 (53.7-56.4)55.0 (53.7-56.2)Ageb (years), mean (95% CI)

.1534.3 (32.7-35.9)34.9 (33.5-36.2)35.3 (34.0-36.6)Body mass index (kg/m2), mean (95% CI)

.6675 (87.2)125 (88.0)148 (86.1)Female gender, n (%)

.77232828Geographic distributionc (number of US states)

.49138.1 (134.7-141.5)138.6 (136.0-141.2)138.9 (136.6-141.3)Systolic BPd (mmHg), mean (95% CI)

.1287.4 (85.3-89.4)86.1 (84.5-87.7)86.2 (84.8-87.7)Diastolic BP (mmHg), mean (95% CI)

.121.2 (0.96-1.5)1.3 (1.1-1.5)1.3 (1.2-1.5)Number of BP medications, mean (95% CI)

aP value comparing the primary cohort to participants completing the intervention with longer tracking.
bAge was not available for 5 participants.
cUS state data were not available for 50 participants.
dBP: blood pressure.

Table 2. Change in blood pressure across sample cohorts.

Completed and longer tracking
(N=86)

Completed intervention
(N=142)

Primary cohort (N=172)Measures

–12.7 (–16.0 to –9.5)–11.2 (–13.6 to –8.8)–11.5 (–13.7 to –9.3)Systolic BPa change (mmHg), mean (95% CI)

–7.4 (–9.7 to –5.1)–5.8 (–7.5 to –4.1)–5.9 (–7.3 to –4.4)Diastolic BP change (mmHg), mean (95% CI)

86.5 (84.2 to 88.7)68.5 (64.1 to 72.8)62.6 (58.4 to 66.8)BP duration (days), mean (95% CI)

3.2 (2.6 to 3.7)2.8 (2.4 to 3.2)2.7 (2.4 to 3.1)Number of average weekly BP readingsb, mean (95% CI)

71 (82.6)106 (74.7)129 (75.0)Meaningful changes in BP, n (%)

69 (80.2)108 (76.1)132 (76.7)Follow-up BP average<140/90 mmHg, n (%)

37 (43.0)52 (36.6)63 (36.6)Follow-up BP average<130/80 mmHg, n (%)

23 (26.7)32 (22.5)39 (22.7)Follow-up BP average<120/80 mmHg, n (%)

aBP: blood pressure.
bMeaningful change is defined as a minimum decrease of 5 points in systolic blood pressure or 2.5 points in diastolic blood pressure.
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Figure 3. Observed change in participant blood pressure by baseline category.

Figure 4. Mean systolic blood pressure over time in the Completed with Longer Tracking cohort. Plot of mean systolic blood pressure per intervention
week, with SE bars. The sample size of weekly means varied from 42 to 86 participants.
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Engagement
In the Primary cohort, 94.2% (162/172) of the participants were
using the app after 6 weeks (mid-intervention) and 82.6%
(142/172) of the participants completed the intervention. Full
app use data were available for 94.8% (163/172) of the
participants in the Primary cohort. Use of the app was defined
as active use of any feature, excluding the act of a login or
logout. Total distinct app engagements averaged 12.2 per day
(95% CI 10.9-13.4), and the average number of calls completed
with an intervention program health coach was 3.4 (95% CI
3.1-3.7).

Predictive Modeling
The random forest model was trained on 427 participants
(Prediction Model cohort in Figure 1). The resultant ROC curve
and AUC for days 1, 3, and 7 models showed that the model
performs better as more days of data are used (Figure 5).

Performance of the day 7 model was examined with a target
false positive rate of 25%. The nearest point on the ROC curve
to the desired false positive rate was at 26%. At this point in
the curve, we observed a sensitivity or true positive rate of 70%

and a specificity or true negative rate of 74%. The observed
misclassification rate or error rate was 27%. The positive
predictive value was 56%, and the negative predictive value
was 84%.

The Tree SHAP algorithm was applied to ascertain which model
features best predicted intervention completion in the entire
analyzed population (Figure 2). The results indicate that, on an
average, early engagements directly related to intended
behavioral interactions and changes (eg, self-monitoring of
biometrics, completing supportive and core app interactions, or
reporting more exercise) are most predictive of intervention
completion; sociomarkers (eg, Android vs iPhone use) are also
predictive but to a lesser degree.

To illustrate how the machine learning model can convey both
a completion probability and the contribution of each feature
to that computed probability for a single participant, a plot of
the SHAP values for a random participant at day 7 is shown in
Figure 6. In this example, the participant’s tracking of BP and
baseline body mass index contributes to a higher probability of
completion, but this is partially counteracted by the lack of
reporting in exercise and relatively low tracking of weight.

Figure 5. Receiver operating characteristic curves for predictive models of days 1, 3, and 7. ROC: receiver operating characteristic; AUC: area under
the curve.
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Figure 6. The day 7 probability of intervention completion for one participant, represented by the Shapley Additive Explanation Force Plot. Feature
use contributing to a higher probability of intervention completion is shown in red, along with the size of the feature’s contribution. Feature use
contributing to a lower probability of intervention completion is shown in blue. DBP: diastolic blood pressure; BP: blood pressure; BMI: body mass
index.

Discussion

Principal Findings
The digitally delivered intervention resulted in meaningful
reductions in BP in adults. The majority of BP reduction was
observed within the first 6 weeks of the intervention, indicating
a rapid response to the digital intervention. By the end of the
12-week intervention, a high proportion of participants achieved
BP control as per the ACC/AHA definition (43% in the
Completed with Longer Tracking cohort) [1]. The greatest
reductions were found in participants with stage 2 hypertension,
with a mean SBP improvement of 17.6 mmHg. The BP-lowering
effects observed were comparable or greater than those observed
in other digitally delivered multicomponent interventions
[14-16,24,29].

We did not find evidence that these improvements were the
result of intensified medication therapy or that the BP reduction
was due to weight change alone. This suggests that behavioral
changes made during the intervention period account for much
of the reduction in BP observed, and this observation is
consistent with the effect sizes of other intensive behavioral or
lifestyle interventions [29-32]. Importantly, the effects observed
here are meaningfully greater than those observed by
self-monitoring of BP alone, which suggests that multiple
behaviors contribute to the effects [29,33]. For example, the
2017 meta-analysis conducted by Tucker et al showed that
self-monitoring of BP was associated with changes of –3.2
mmHg in SBP and –1.6 mmHg in DBP between baseline and
12-month clinic measurements as compared to usual care [33].
In other analyses (data not shown), we did not find any
correlation between the degree of self-tracking and BP change,
nor did we find any difference between participants who were
provided a home BP cuff and those who already had one.

A proof-of-concept analysis of a predictive model developed
using machine learning demonstrated the ability to predict
intervention completion after just one full day of engagement.
The ability to predict intervention completion in a timely fashion
is important for several reasons: (1) Given the typical patterns
of apps use, there is likely a short time period during which an
intervention adjustment can be made to increase completion

rates. (2) Ongoing participation in the intervention is associated
with a very high probability of achieving meaningful BP
reductions. (3) Completion may be important for sustainment
of behavioral changes and resulting outcomes beyond the
intervention period.

This type of machine learning model can be implemented by
choosing an operating point at which to make predictions. The
operating point is chosen based on the balance of false versus
true positives that it is expected to create. The prediction of
likely to complete or not to complete the intervention can then
be acted upon by leveraging SHAP values and creating an
automated set of actions such as providing tailored feedback,
reinforcement, warnings, and reprioritization of behavioral
goals. The value of the model can then be studied in this context
to see how it alters both completion rates and clinical outcomes.

This prediction methodology creates the opportunity for other
exciting applications that may further improve the effectiveness
of treatment. For example, the same methodology can be used
to predict more direct measures of treatment success, such as a
specific degree of BP improvement. Once a model that predicts
clinical outcomes in the midst of treatment is validated, it can
be used to alter the course of treatment with the intent of
improving outcomes and patient experience.

Finally, machine learning allows us to explore discrete
components of a digital intervention and the way they interact
with participant characteristics. For example, in the current
model, we found that the count of exercise sessions reported in
the first week of the intervention was highly predictive of
intervention completion. We also found that novel sociomarkers
such as email domain or phone operating system had predictive
capacity. For example, participants who used Yahoo email were
more likely to complete the intervention than users of other
email domains. It may be that Yahoo email use is a proxy for
older age and other personality or socioeconomic features [34].

Limitations
A meaningful limitation of this retrospective analysis is the lack
of a control group to evaluate the true effect size of this
behavioral intervention. However, the effect size observed can
be compared to similar study cohorts reported in the literature.
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For example, in a recent 8-week study comparing metformin
to placebo in nondiabetic adults with hypertension having
similar demographic features and baseline BPs, the control
group (n=49) had a mean improvement of 2.6 mmHg in SBP
when measured in the clinic and a 0.7 mmHg mean increase
when measured with 24-hour ambulatory BP monitoring [31].
Larger improvements of 6.0 mmHg in SBP were seen in the
control group (n=131) in a 12-month study comparing the impact
of electronic counseling on the standard of care for BP in adults
with hypertension [29]. Participants of that study were recruited
from the Heart and Stroke Canada website, and the authors
hypothesized that this may have resulted in a study cohort of
independently motivated participants, where participants
assigned to the control group were more likely to take action
with the standard of care recommendations. Improvements in
that control group were clinically meaningful but are about half
the size of those observed in our study cohort.

A limitation of our machine learning model is the size of the
training dataset used, which typically correlates with the
predictive strength of the model and limits the number of
features that can be explored. However, it is encouraging to see
that predictive power and feature importance can emerge from
a relatively small dataset. This should encourage others to begin

using machine learning models early, rather than waiting for
massive datasets to accrue. The strength of the any machine
learning model can be expected to improve over time as the
training dataset grows.

Conclusions
Reductions in BP were observed among adults with hypertension
who use the digital therapeutic studied here. The degree of BP
reduction was clinically meaningful and achieved rapidly by a
majority of participants studied. Greater improvement was
observed in participants with more severe hypertension at
baseline. A successful proof of concept for using machine
learning to predict intervention completion after one day of app
use was presented. Future research should examine the ability
of treatment tailored in response to this model to further enhance
outcomes. In addition, research is needed to assess the durability
of outcomes following the intervention period, to identify
subgroups and subgroup characteristics where the targeted
intervention is most/least effective, and on the use of machine
learning to predict clinical outcomes and modify treatment
parameters during the course of treatment. The digital
intervention should also be evaluated for its effectiveness in
treating other chronic diseases that share the same root causes
as hypertension.
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