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Abstract

Background: Obstructive sleep apnea (OSA) is a condition in which a person’s airway is obstructed during sleep, thus disturbing
their sleep. People with OSA are at a higher risk of developing heart problems. OSA is commonly treated with a positive airway
pressure (PAP) therapy device, which is used during sleep. The PAP therapy setup provides a good opportunity to monitor the
heart health of people with OSA, but no simple, low-cost method is available for the PAP therapy device to monitor heart rate
(HR).

Objective: This study aims to develop a simple, low-cost device to monitor the HR of people with OSA during PAP therapy.
This device was then tested on a small group of participants to investigate the feasibility of the device.

Methods: A low-cost and simple device to monitor HR was created by attaching a gyroscope to a PAP mask, thus integrating
HR monitoring into PAP therapy. The gyroscope signals were then analyzed to detect heartbeats, and a Kalman filter was used
to produce a more accurate and consistent HR signal. In this study, 19 participants wore the modified PAP mask while the mask
was connected to a PAP device. Participants lay in 3 common sleeping positions and then underwent 2 different PAP therapy
modes to determine if these affected the accuracy of the HR estimation.

Results: Before the PAP device was turned on, the median HR error was <5 beats per minute, although the HR estimation error
increased when participants lay on their side compared with when participants lay on their back. Using the different PAP therapy
modes did not significantly increase the HR error.

Conclusions: These results show that monitoring HR from gyroscope signals in a PAP mask is possible during PAP therapy
for different sleeping positions and PAP therapy modes, suggesting that long-term HR monitoring of OSA during PAP therapy
may be possible.

(JMIR Cardio 2021;5(1):e26259) doi: 10.2196/26259
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Introduction

Background
Obstructive sleep apnea (OSA) is a condition in which a
person’s upper airway is obstructed during sleep [1]. This leads

to disrupted breathing, which affects the sleep quality. It affects
14% of men and 5% of women aged between 30 and 70 years
[2]. In addition to having reduced sleep time and quality, people
with OSA are at a risk of developing heart problems [3]. People
with heart problems are also advised to be checked for OSA
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[4]. OSA is commonly treated using positive airway pressure
(PAP) therapy, in which a device is used to keep the airway
from becoming obstructed by the application of a positive
pressure [1].

It is thought that by long-term monitoring of the heart rate (HR)
of people with OSA, it may be possible to monitor changes in
heart health. If individual heartbeats can be accurately detected,
then the HR variability of the wearer can be used to estimate
cardiac health or predict heart problems or people undergoing
PAP therapy [5]. However, if HR variability measurements are
not possible, measuring the resting HR [6,7] can also be used
as a predictor of heart failure. Finally, OSA episodes are
characterized by acute changes in HR [8]; thus, by monitoring
HR, OSA episodes could be detected [9], which could be used
to help evaluate the effectiveness of PAP therapy in situations
where there is significant mask leakage.

Adding HR monitoring to PAP therapy offers a good opportunity
for long-term continuous cardiac monitoring as, when used
correctly, PAP therapy is used for several hours every night.
To add HR monitoring to PAP therapy, it would be
advantageous to integrate sensors into the PAP mask rather than
adding additional devices to the PAP therapy setup. However,
any sensors or devices that are embedded into a PAP mask must
be comfortable, safe, and noninvasive to promote patient
compliance. In addition, as it is recommended that PAP therapy
masks be replaced regularly to prevent air leakage, any
modifications to the PAP masks should be low cost. This will
ensure that there is no significant increase in the cost of the
masks, leading to a more expensive PAP therapy. A more
detailed description of the case for a low-cost device for
monitoring HR during PAP therapy can be found in the thesis
by Gardner [10].

We previously proposed a device consisting of a modified PAP
mask that simultaneously measures electrocardiogram (ECG)
and photoplethysmography (PPG) signals from the wearer [11].
However, both ECG signals [12] and PPG signals [13] can be
affected by motion artifacts, which during PAP therapy can
occur from whole body movements that occur naturally during
sleep. Motion can be detected using an accelerometer or a
gyroscope to exclude the signal affected by motion artifacts, as
described by He et al [14]. However, costs can be reduced by
using only one sensor on the mask instead of using multiple
sensors. Hence, if the HR of the wearer can be detected from
the sensor used to detect movement, then only one sensor is
needed.

Another advantage of using a movement sensor to detect HR
instead of ECG or PPG is that more variables beyond HR can
be extracted. The gyroscope and accelerometer signals used to
measure ballistocardiography (BCG) also have the potential to
measure variables such as respiration and sleep position, as well
as detecting movement during sleep [15]. Indeed, we have
previously shown that significant head movement can be
detected by monitoring the magnitude of a gyroscope signal
mounted on a PAP mask [16].

BCG (also known as seismocardiography) is a method for
detecting HR by detecting small movements or vibrations caused
by heartbeats [17]. BCG-based devices integrated into beds

have been shown to be able to monitor HR during sleep and
detect apnea episodes [18,19]. Wearable BCG devices have
been developed for cardiac monitoring, in which an
accelerometer or a gyroscope is positioned such that it rests on
the patient’s skin [14,20-24]. Most wearable BCG devices
involve the sensor being placed on the wearer’s chest, as this
is the optimum location for cardiac monitoring [20-23].
However, if the sensors need to be integrated into the mask for
PAP therapy monitoring during PAP therapy, the sensors cannot
be placed on the chest.

Previous head-mounted BCG devices for HR monitoring have
been reported in the literature. Hernandez et al [24] used the
signals from the on-board inertial measurement unit (IMU) in
Google Glass, a wearable headset in the shape of glasses. The
HR and respiration rate were estimated from the accelerometer
and gyroscope signals from the IMU. This device was able to
estimate the HR most accurately when the participants were
lying on their back compared with standing and sitting,
supporting the concept of using a similar technique for
monitoring during sleep.

Floris et al [25] conducted a similar study in which HR and
respiration rate were estimated from signals from an
accelerometer and a gyroscope mounted inside a head-worn
virtual reality device. Similar to the study by Hernandez et al
[24], in the study by Floris et al [25], participants wore the
device while standing, sitting, and lying down, and the HR was
estimated over sliding 10-second windows. However, unlike
the results by Hernandez et al [24], the results presented by
Floris et al [25] showed more accurate HR estimation when the
participants were standing up compared with when the
participants were lying down.

He et al [14] developed a wearable BCG device mounted behind
the ear, which contained an accelerometer and ECG electrodes.
Heartbeat information was extracted from the accelerometer
signals. However, unlike the device by Hernandez et al [24],
which measured HR, He et al [14] measured the time delay
between the accelerometer signal and the on-board ECG signal,
using it to estimate the pre-ejection period in the cardiac cycle.
This value was estimated over an 8-second period, owing to the
relatively poor signal-to-noise ratio (SNR) of both the measured
ECG and BCG signals. In addition, He et al [14] found that for
7 healthy subjects, the amplitude of the accelerometer signal

correlated with the stroke volume of the wearer (R2=0.66).

Most BCG examples that have been previously developed have
a gyroscope or an accelerometer placed on the person’s chest.
Floris et al [25] described how, compared with these chest BCG
signals, BCG signals measured from the head or neck have a
lower SNR and are more prone to motion artifacts. In the
examples of head-worn BCG devices, the authors compensate
for this low SNR by taking an average HR over a period of
either 8 [14], 10 [25], or 20 seconds [24] instead of measuring
an instantaneous HR. A similar result was also shown for a
BCG wearable device located on the wrist [26]. This low SNR
makes the accurate monitoring of HR from more proximal
locations, such as the head, more difficult than monitoring from
the chest.

JMIR Cardio 2021 | vol. 5 | iss. 1 | e26259 | p. 2https://cardio.jmir.org/2021/1/e26259
(page number not for citation purposes)

Gardner et alJMIR CARDIO

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We have previously reported a device consisting of a gyroscope
attached to a PAP mask and a method for extracting HR
information from the gyroscope signals [16,27]. The advantage
of this device is that it is integrated into the PAP device setup,
meaning that no extra devices need to be worn for the wearer
to have their HR monitored. It is also a low-cost and simple
method for monitoring the HR. Finally, in comparison with
other wearable BCG devices located on the head, the device
proposed in this study has been shown to provide an accurate
HR value every 1.5 seconds, as opposed to averaging an HR
value over a period of several seconds. However, the device
was only tested on one participant, with no indication of
interpatient variability.

Objectives
This study aims to evaluate the accuracy of the proposed HR
estimation method on a group of healthy participants, verifying
that this concept works on a broader population. This is the first
study to evaluate the accuracy of HR estimation using a
BCG-based sensor mounted on a PAP mask on multiple
participants. In addition, this is the first study to investigate the
effect of different PAP therapy modes on the accuracy of the
BCG-based HR estimation method.

Methods

Overview
The HR estimation process involved first collecting the BCG
signal from the participants while they were wearing a
continuous positive airway pressure (CPAP) mask. The signals
were then retrospectively analyzed, and heartbeats were
detected. From these detected heartbeats, a data fusion method
was used to produce a consistent and accurate HR signal. The
details of how each step of this process was achieved are
described in this section.

Experiment Setup
A PAP mask was modified to estimate the HR of the wearer.
The mask was a ResMed Quattro Air mask, onto which an IMU
(MPU 9150; Invensense), which includes a 3-axes gyroscope
signal, was attached, as shown in Figure 1. The configuration
of the gyroscope was such that x rotation corresponded to
rotating the head from left to right, y rotation corresponded to
head tilt toward the shoulders, and z rotation corresponded to
a nodding up and down movement.

Figure 1. Position and orientation of the gyroscope on a positive airway pressure mask.

The gyroscope was connected to an Arduino Pro Mini, and the
signals were collected at a sampling frequency of 50 Hz. All
experimental signals were recorded using Labview (National
Instruments) and were analyzed post experiment using
MATLAB (Mathworks).

The participants were also connected to a PAP device (ResMed
Lumis 150, ResMed) during recording to simulate PAP therapy.

The device was tested on 19 participants (14 males and 5
females), with a mean age of 30 (SD 9) years. OSA was not an
exclusion criterion for participation in this study. The experiment

was approved by the Southern Adelaide Human Research Ethics
Committee.

The participants lay on a bed, lying on their back, left, and right
side for a period of 5 minutes in each position (stages 1-3; Table
1). When the participants were lying on their side, they were
instructed to lie on their side in a way that was comfortable for
them and similar to how they would lie when sleeping. This
was done to determine whether the sleeping position affected
the accuracy of the HR measurement. The PAP device was
turned off during the first 4 stages of the experiment. The
experimental setup is shown in Figure 2.
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Table 1. Participants’ positions and positive airway pressure therapy modes for the experiment. Each experiment stage lasted for 5 minutes.

PAPa modeParticipant positionExperiment stages

OffLying on the back1

OffLying on the left side2

OffLying on the right side3

OffLying on the back4

CPAPbLying on the back5

VPAPcLying on the back6

aPAP: positive airway pressure.
bCPAP: continuous positive airway pressure.
cVPAP: variable positive airway pressure.

Figure 2. The experiment setup. The participant will wear the modified positive airway pressure (PAP) mask and lie on the bed in the required orientation.
The PAP mask was connected to the PAP device as the gyroscope signals were recorded.

The participants then lay on their back (stage 4), and the PAP
therapy device was turned on, using 2 different PAP modes
(stages 5 and 6; Table 1). These modes were CPAP with a
pressure of 6 cm H2O and variable positive airway pressure
(VPAP) with pressures of 4 cm H2O during expiration and 8
cm H2O during inspiration. The applied pressures were in the
lower range of clinical PAP pressures [28], so that the
participants would not feel too uncomfortable.

A heartbeat detected from the gyroscope signal was determined
as correctly detected if it was within 0.02 seconds of a heartbeat
detected in the reference ECG signal [29]. The HR values
estimated from the gyroscope signal (methods described below)
were compared with HR values from a reference ECG signal,
measured using 3 Ag/AgCl electrodes (Red Dot electrodes, 3M)
placed on the participant’s hands and right foot. The ECG
heartbeats were detected using the Pan-Tompkins heartbeat
detection algorithm [29].
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As there is a natural delay between the timing of the heartbeat
in the ECG and the gyroscope signals [14,30], the heartbeats
detected from the gyroscope signals were shifted back in time
to compensate for this delay. The value of this delay was
calculated using the median time difference between the detected
heartbeats in the ECG signal and the gyroscope signals.

The heartbeat detection sensitivity and false positive rate (FPR)
were calculated:

where ECGcorrect and gyrocorrect are the number of correctly
detected heartbeats in the ECG and gyroscope signals,

respectively; gyroincorrect is the number of heartbeats not
associated with a heartbeat from an ECG signal, and gyrototal

is the total number of heartbeats detected in the gyroscope
signal.

Heartbeat Detection Algorithm
The method for identifying heartbeats in a gyroscope signal
mounted on a PAP therapy mask has been described previously
and is summarized in Figure 3 [27]. Briefly, a normalized
gyroscope signal (gn) was derived using the x, y, and z
gyroscope signals (gx, gy, gz) such that:

Figure 3. A summary of the proposed method for transforming the gyroscope signal to enable heartbeat detection.

All signals were resampled to 500 Hz, similar to the study by
Hernandez et al [26]. The signals gx, gy, gz and gn were then
transformed to maximize the SNR using the methods previously
described [27]. A movement threshold was also created, such
that when the signal magnitude exceeded this threshold,
heartbeat detection was paused, as movement artifacts
significantly reduced the accuracy of the heartbeat detection
algorithm [16].

For the heartbeats detected in the gx, gy, gz and gn signals, the
sensitivity and FPR were calculated and compared between the
different experiment stages.

Kalman Filter for Data Fusion
A data fusion method was developed to combine the HR
information from the gyroscope signals gx, gy, gz and gn. This
has been described and implemented on one subject in our
previous work [16,27]. A Kalman filter (KF) is a data fusion

method that is commonly used in fields such as robotics [31],
but it has also been used in physiological monitoring to produce
accurate and consistent HR measurements [32]. We have
previously shown that the KF algorithm described has superior
performance when compared with a simple moving average
[10,16,27].

To implement the KF algorithm, the recording period was first
divided into nonoverlapping 1.5-second windows. The purpose
of these windows is to create discrete and relatively large time
intervals for the KF. A width of 1.5 seconds was chosen such
that for a subject with a normal HR (>40 beats per minute
[BPM]), there will be at least one heartbeat per window. Each
window was analyzed such that one HR value was extracted
per signal, and outlier HR values (less than 40 or greater than
200 BPM) were discarded.

The HR was modeled such that for time k:
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HRk = HRk−1 + ωk   (1)

where wk represents the natural variation of the HR, modeled
as zero-mean Gaussian noise with covariance Qk. At time k, the
observation measurements were defined as:

zk = Hkxk + vk   (2)

where:

HRx,k, HRy,k, and HRz,k are the HR estimations from the x, y,
and z components, respectively, at time k, and HRn,k is the HR
estimation from the normalized gyroscope component. In
addition, Rk was defined as:

where the component i at time k:

As the instantaneous HR signal from the ECG does not have a
regular time interval between measurements, the ECG signal
was resampled to be a fixed interval signal. Windows of width
1.5 seconds were created, similar to the KF method, and the
ECG HR values inside each window were averaged to produce
a ECG HR signal with a fixed interval of 1.5 seconds. The HR
error for the KF was then defined as the magnitude difference
between the KF output and the ECG HR for each 1.5-second
window. The mean HR error was calculated and analyzed for
each experiment stage.

Results

Heartbeat Detection Algorithm
Figure 4 shows the output from the heartbeat detection algorithm
applied to a raw gyroscope signal. Peaks due to the motion of
the heartbeat are easily visible. The percentage of heartbeats
that were correctly detected in each participant position by the
individual and combined gyroscope signals is given in Table 2.
Table 3 shows the percentages of false positives. From these
tables, it can be seen that the heartbeat detection algorithm was
most successful in detecting heartbeats in the Y gyroscope
signal, which represents the lateral movement of the head toward
the shoulders (Figure 1).
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Figure 4. An example of how the raw gyroscope signal is transformed to a signal where peak detection can be easily applied. First, the raw signal (top)
has a Hilbert transformation applied (second from top). This signal then has a bandpass filter applied (third from top). The signal is finally squared
(bottom).

Table 2. Median (IQR) percentage of heartbeats that were correctly identified by the heartbeat detection algorithm.

Normalized gyroscope, me-
dian (IQR)

Z gyroscope, median (IQR)Y gyroscope, median (IQR)X gyroscope, median (IQR)Experiment stagea

92.21 (15.13)72.88 (22.53)b94.28 (18.17)83.84 (28.02)bLying on the back

62.64 (32.01)c56.23 (19.56)c71.80 (33.11)c52.61 (20.80)b,cLying on the left side

68.83 (18.23)c55.54 (19.21)b,c76.82 (28.56)c59.44 (26.32)b,cLying on the right side

89.39 (25.36)66.19 (19.64)b90.65 (12.76)81.79 (25.97)bLying on the back

90.69 (19.76)65.79 (22.94)b90.05 (17.76)84.79 (25.06) (P=.06)CPAPd on

59.67 (33.11)b,c39.74 (26.17)b,c90.96 (16.18)77.78 (26.25) (P=.05)VPAPe on

aSignificance calculated using paired sign tests due to nonnormal distributions.
bPercentage of heartbeats detected significantly less than detected in the Y gyroscope signal (P≤.037).
cDecrease in median heartbeats detected compared with lying on the back (P≤.047).
dCPAP: continuous positive airway pressure.
eVPAP: variable positive airway pressure.
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Table 3. Median (IQR) percentage of heartbeats that were incorrectly classified as heartbeats by the heartbeat detection algorithm.

Normalized gyroscope, me-
dian (IQR)

Z gyroscope, median (IQR)Y gyroscope, median (IQR)X gyroscope, median (IQR)Experiment stagea

5.91 (9.85)22.09 (25.08)b4.34 (7.10)12.51 (37.22)bLying on the back

30.95 (32.63)c33.51 (25.68)c16.63 (22.78)c42.42 (24.34)b,cLying on the left side

22.09 (16.97)c31.05 (18.95)b,c8.55 (17.46)c29.98 (14.78)b,cLying on the right side

6.81 (10.63)25.66 (25.13)b5.23 (11.55)11.17 (31.19)bLying on the back

6.23 (10.98)25.48 (21.10)b4.61 (12.33)14.88 (17.66)CPAPd on

15.62 (13.36)b,c37.25 (22.46)b,c8.07 (13.79)17.86 (25.24)VPAPe on

aSignificance calculated using paired sign tests due to nonnormal distributions.
bPercentage of detected heartbeats significantly greater than detected in the Y gyroscope signal (P≤.024).
cDecrease in median heartbeats detected compared with lying on the back (P≤.038).
dCPAP: continuous positive airway pressure.
eVPAP: variable positive airway pressure.

Tables 2 and 3 also show that the Z gyroscope signal
(corresponding to forward head tilt) produced the lowest
percentage of correct heartbeats and the highest proportion of
false heartbeats for all sleeping positions.

Tables 2 and 3 show that when the participants were lying on
either side, the heartbeat detection method was significantly
less effective than when the participants were lying on their
back.

The results also showed that there was no difference between
the effectiveness of the heartbeat detection accuracy when the
PAP device was off (stage 4) and when the CPAP mode was
on (stage 5). However, the rapid change in pressure that occurs
during the VPAP therapy mode (stage 6) created motion artifacts
in the Z gyroscope signal, leading to an increase in the FPR and
a reduction in the sensitivity. An example of these motion
artifacts caused by the rapidly changing pressure is shown in
Figure 5.

Figure 5. An example of how the change in pressure during variable positive airway pressure (blue) causes artifacts in the gyroscope signal (red).

In summary, the results in Tables 2 and 3 show that accurate
heartbeat detection is possible when the participants are lying
on their back, particularly for the Y gyroscope signal. However,
the heartbeat detection algorithm was less effective when the
participants were lying on the side. The heartbeat detection

effectiveness was also reduced when the VPAP therapy mode
was activated.

Although the heartbeat detection algorithm shows promising
results, the results are not consistent enough for continuous
accurate HR monitoring, particularly when the participants were
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lying on their side. Similar results were observed in previous
preliminary testing [16,27]. Given that from the gyroscope 4
signals were recorded that all measured HR, the next step was
to implement a data fusion method to investigate whether this
would enable a consistent and accurate HR measurement from
the BCG signals.

KF for Data Fusion
An example of how the described KF algorithm can perform
data fusion to estimate HR is shown in Figure 6. This figure
shows good consistency between the output of the KF algorithm
and the HR from the reference ECG signal, even when the HR
values from the individual gyroscope components were less
reliable.

Figure 6. An example of how the heart rate (HR) information from the gyroscope signals are used to estimate the HR using the Kalman filter compared
with the reference electrocardiogram HR. BPM: beats per minute; HR: heart rate.

The mean HR error of all participants for all the experiment
stages is shown in Figure 7. The accuracy of the HR estimation
from the KF was reduced when the participants were lying on
their side (stages 2-3) compared with when they were lying on
their back in stage 1. This is shown in Figure 7 by the 1.5 BPM

increase in the mean error when the participants were lying on
their side (P≤.02). Figure 7 also showed that there was no
significant difference in the mean error between when the
participants were lying on their left or right side (P≥.32).

Figure 7. Mean error of the estimated heart rate from the Kalman filter. “*” indicates significant difference (P<.05). Significance was calculated using
paired one-tailed t tests. BPM: beats per minute; HR: heart rate; KF: Kalman filter.
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Figure 5 shows that the VPAP mode (stage 6) caused motion
artifacts in the Z gyroscope signal, which reduced the
effectiveness of the heartbeat detection algorithm, as shown in
Tables 2 and 3. However, Figure 7 shows that the activation of
the VPAP mode (stage 6) did not have a significant effect on
the error of the KF HR estimation when compared with the
CPAP mode (stage 5; P≥.14). Hence, the KF algorithm is able
to compensate for the motion artifacts in the Z gyroscope signal,
ensuring no change in accuracy during VPAP mode.

Discussion

Principal Findings
In this study, a low-cost modified PAP therapy mask was created
to estimate the HR of the wearer using the signals from the
on-board gyroscope. A heartbeat detection algorithm was
developed to identify heartbeats in the gyroscope signals, and
a KF algorithm was implemented in an attempt to provide a
more consistent and accurate HR signal. The KF algorithms
were tested with healthy participants lying on their back and
sides and with participants simulating 2 different PAP therapy
modes.

The results in Tables 2 and 3 suggest that the heartbeat signal
is strongest in the Y gyroscope direction. Given the sensor
orientation shown in Figure 1, this is an unexpected result. The
results of this study suggest that the complex anatomical
structures between the heart and the head cause the head to
rotate the strongest in the Y gyroscope direction and impede
the gyroscope signal in the Z direction. Future work could study
the relationship between the heartbeat and head movement.
Alternatively, other methods for detecting instantaneous HR
from a BCG signal that have been previously developed [33],
including machine learning–based heartbeat detection algorithms
[34,35], may be able to increase the accuracy of heartbeat
detection when the participants are lying on their side.

Few devices have been developed for monitoring HR during
sleep using only a BCG signal. Di Rienzo et al [23] used a
wearable device that contained an accelerometer located on the
sternum of the wearer to monitor cardiac intervals during sleep.
However, to monitor these intervals, the BCG signal information
was combined with an ECG signal that was used to locate and
identify the heartbeats. The results from this study show that a
standalone BCG device can be used to estimate HR during sleep,
although this does not have the same heartbeat detection
accuracy as systems that use only the ECG signal [23] to detect
the heartbeats.

Hernandez et al [26] developed a device to measure HR using
only the BCG signals. The algorithm developed by Hernandez
et al [26] was designed such that an HR could be accurately
measured when the participant was standing, sitting, and using
the device in normal everyday life. This meant that it needed
to be much more resistant to movement artifacts than if it was
designed for just sleep monitoring. As a result, Hernandez et al
[26] did not collect beat-by-beat HR information and instead
used the peak signal frequency over a 20-second interval as the
HR value. This method for HR estimation was designed such
that it would require low power and low computational cost.

In our study, a shorter time interval could be used to estimate
the HR, as movement episodes are less likely. However, the
trade-off between the decrease in the signal interval length is
that there is a slight decrease in the accuracy of the HR
estimation, although it is difficult to compare accuracies over
different time intervals. Hernandez et al [26] were able to
estimate the HR of the wearer to within 0.44 BPM of the
reference HR value over a 20-second interval when the
participants were lying on their back. In contrast, the mean error
of the HR estimation from the KF algorithm when the
participants were lying on their back was approximately 3 BPM.
In addition to being able to track HR changes quicker than other
examples in the literature, by integrating the sensors into the
PAP mask, no additional devices are required to be worn by
people using PAP devices.

The sensor used in this study (MPU-9150) was sampled at a
sampling rate of 50 Hz and then up-sampled to 500 Hz. This is
much lower than that of other BCG examples, which have
significantly higher sampling rates [20]. A sensor with a
frequency of 50 Hz was chosen to keep the cost of the device
low, and the trade-off of reducing the cost is that the resolution
and sampling rate are lower. The results of this study show that
a sampling rate of 50 Hz is sufficient to estimate HR at
1.5-second intervals using the described algorithm.

Limitations
This study had several limitations. The participants of this study
were not limited to people with OSA or people with cardiac or
respiratory problems. In addition, the participants were not
sleeping during the study but were lying awake. Although the
results of this study show that the proposed method works well
on healthy participants, future work will look at the effectiveness
of the proposed method on people with OSA who are sleeping.

The applied pressures that were used during the CPAP (6 cm
H2O) and VPAP modes (4 cm H2O-8 cm H2O) were relatively
low compared with the pressures used clinically for PAP therapy
modes. These pressures were chosen to ensure the comfort of
the participants, many of whom had not previously undergone
PAP therapy. It is unknown whether for higher pressures, the
results would change significantly.

The HR model used in the KF is a simplistic estimation of the
HR dynamics during sleep. Given that it is possible to monitor
additional variables using the gyroscope signals, it is possible
to increase the HR estimation accuracy by increasing the
complexity of the HR model. Future work will look at further
developing the HR model used in the KF.

Conclusions
In this study, the ability to accurately measure HR from a
gyroscope attached to a PAP mask has been shown. The results
show that our previously developed method for estimating HR
was able to estimate HR accurately for healthy participants
regardless of their sleeping position. In addition, the CPAP and
VPAP therapy modes did not significantly affect the HR
estimation accuracy, despite the change in pressure of the VPAP
mode causing artifacts in the gyroscope signal. The results of
this study suggest that long-term monitoring of the HR of a
person using a PAP device is possible. Future testing will
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involve testing the device during sleep and in patients with sleep
apnea during PAP therapy and investigation of the device’s

response during arrhythmias.
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HR: heart rate
IMU: inertial measurement unit
KF: Kalman filter
OSA: obstructive sleep apnea
PAP: positive airway pressure
PPG: photoplethysmography
SNR: signal-to-noise ratio
VPAP: variable positive airway pressure
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