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Abstract

Background: Cardiorespiratory fitness (CRF) is an independent risk factor for cardiovascular morbidity and mortality. Adding
CRF to conventional risk factors (eg, smoking, hypertension, impaired glucose metabolism, and dyslipidemia) improves the
prediction of an individual’s risk for adverse health outcomes such as those related to cardiovascular disease. Consequently, it is
recommended to determine CRF as part of individualized risk prediction. However, CRF is not determined routinely in everyday
clinical practice. Wearable technologies provide a potential strategy to estimate CRF on a daily basis, and such technologies,
which provide CRF estimates based on heart rate and body acceleration, have been developed. However, the validity of such
technologies in estimating individual CRF in clinically relevant populations is poorly known.

Objective: The objective of this study is to evaluate the validity of a wearable technology, which provides estimated CRF based
on heart rate and body acceleration, in working-aged adults with cardiovascular risk factors.

Methods: In total, 74 adults (age range 35-64 years; n=56, 76% were women; mean BMI 28.7, SD 4.6 kg/m2) with frequent
cardiovascular risk factors (eg, n=64, 86% hypertension; n=18, 24% prediabetes; n=14, 19% type 2 diabetes; and n=51, 69%
metabolic syndrome) performed a 30-minute self-paced walk on an indoor track and a cardiopulmonary exercise test on a treadmill.
CRF, quantified as peak O2 uptake, was both estimated (self-paced walk: a wearable single-lead electrocardiogram device worn
to record continuous beat-to-beat R-R intervals and triaxial body acceleration) and measured (cardiopulmonary exercise test:
ventilatory gas analysis). The accuracy of the estimated CRF was evaluated against that of the measured CRF.

Results: Measured CRF averaged 30.6 (SD 6.3; range 20.1-49.6) mL/kg/min. In all participants (74/74, 100%), mean difference
between estimated and measured CRF was −0.1 mL/kg/min (P=.90), mean absolute error was 3.1 mL/kg/min (95% CI 2.6-3.7),
mean absolute percentage error was 10.4% (95% CI 8.5-12.5), and intraclass correlation coefficient was 0.88 (95% CI 0.80-0.92).
Similar accuracy was observed in various subgroups (sexes, age, BMI categories, hypertension, prediabetes, and metabolic
syndrome). However, mean absolute error was 4.2 mL/kg/min (95% CI 2.6-6.1) and mean absolute percentage error was 16.5%
(95% CI 8.6-24.4) in the subgroup of patients with type 2 diabetes (14/74, 19%).
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Conclusions: The error of the CRF estimate, provided by the wearable technology, was likely below or at least very close to
the clinically significant level of 3.5 mL/kg/min in working-aged adults with cardiovascular risk factors, but not in the relatively
small subgroup of patients with type 2 diabetes. From a large-scale clinical perspective, the findings suggest that wearable
technologies have the potential to estimate individual CRF with acceptable accuracy in clinically relevant populations.

(JMIR Cardio 2022;6(2):e35796) doi: 10.2196/35796
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Introduction

Cardiovascular diseases (CVDs) are a major cause of morbidity,
mortality, and economic burden worldwide [1]. In addition to
conventional modifiable risk factors for CVD, such as smoking,
high blood pressure, impaired glucose metabolism, and
dyslipidemia, unambiguous epidemiological evidence shows
that cardiorespiratory fitness (CRF) also is an independent and
modifiable risk factor for nonfatal CVD events and for
cardiovascular and all-cause mortality [2-4]. This is
physiologically plausible, as while CRF reflects the integrated
capacity of respiratory, cardiovascular, and skeletal muscle
systems to take up, transport, and use O2 [5], reduced CRF
reflects insufficiencies in one or several of these systems.
Nonetheless, although adding CRF to conventional risk factors
improves the prediction of risk for adverse CVD outcomes [4]
and thus provides an opportunity to optimize patient
management, it is still the only major CVD risk factor that is
not routinely determined in everyday clinical practice [6].

CRF is quantified as an individual’s maximal O2 uptake or peak
O2 uptake (VO2peak) and typically measured by ventilatory gas
analysis during a cardiopulmonary exercise test (CPET) in
clinical practice [7]. CPET requires access of a clinician;
equipment; proficiency of clinical personnel conducting and
interpreting the test; and to determine CRF, maximal effort of
an individual performing the test [7]. As such factors may limit
the use of CPET for CRF determination in clinical practice,
particularly for large-scale risk prediction in asymptomatic
individuals, alternative strategies to estimate CRF as part of
routine clinical visits have been developed [6]. For example,
several nonexercise CRF prediction equations exist; however,
their limited accuracy in estimating CRF at an individual level
limits their clinical utility [8]. Submaximal exercise tests, based
on linear relationships between O2 uptake (VO2) and either heart
rate (HR) or mechanical workload, are another alternative to
estimate CRF [9]. However, their weakness is related to
accuracy, confounding factors (eg, medications), interindividual
personalization, ceiling effect of the predictive parameter such
as HR, and learning effect [9]. To highlight the limitations
related to nonexercise and exercise equations, a recent
comprehensive analysis of 15 different equations revealed that
the accuracy of such equations in estimating CRF is limited
from the perspective of individualized clinical decision-making
[10]. Consequently, further strategies to estimate CRF with
clinically acceptable accuracy are welcome.

Easily available technology provides a strategy to estimate CRF
as recent technological advances in wearable devices, such as

patches, clothing, and wristband monitors, enable the
measurement of HR and multiple other health-related
physiological signals in free-living conditions [11]. The validity
of several wearable technologies in estimating CRF has been
evaluated in healthy young individuals [12-15]. However,
although one such study has also included a small number of
individuals who are middle-aged and obese [16], the validity
of wearable technologies to estimate CRF in clinically relevant
populations with CVD risk factors, chronic diseases and
medications, and heterogeneous fitness levels is poorly known
[15].

In this study, we estimated CRF using a wearable single-lead
electrocardiogram (ECG) device. The device can detect atrial
fibrillation accurately [17], suggesting that it has clinical
applicability within phenomena related to HR and HR variability
(HRV). For estimating CRF, the technology of the device relies
on HR, HRV, and triaxial body acceleration signals and does
not require data from any predetermined protocol, but enables
the estimation during self-paced walking performed in
free-living conditions [18]. Our aim was to examine the validity
of the CRF estimate by comparing it with VO2peak measured
directly by CPET in a clinically relevant cohort of working-aged
adults with heterogeneous CVD risk factor profiles.

Methods

Participants
This validation study was a part of a research collaboration
entitled Heart rate variability analytics to support behavioral
interventions for chronic disease prevention and management
(HealthBeat) and conducted between Central Finland Health
Care District, University of Jyväskylä, and Firstbeat
Technologies Oy in Jyväskylä, Finland. The participants in the
HealthBeat study were primarily recruited via web-based
advertisements, public advertisements delivered to local
noticeboards, and asking the personnel of local health care
providers to inform their patients about the study. The inclusion
criteria of the study were (1) age between 18 and 64 years, (2)

BMI <40 kg/m2, (3) either previous evidence of prediabetes (ie,
impaired fasting glucose and/or impaired glucose tolerance) or
type 2 diabetes diagnosed no more than 5 years ago and/or
diagnosed arterial hypertension, and (4) overall physical function
not preventing the participant from safely performing the
experiments including CPET. The exclusion criteria of the study
were anemia, cancer, chronic obstructive pulmonary disease,
cerebrovascular disease, chronic atrial fibrillation, clinically
significant hypertension-mediated organ damage, diagnosed
diabetes-related microvascular disease (ie, nephropathy,
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neuropathy, and retinopathy), heart failure, insulin use, ischemic
heart disease, left bundle branch block, obstructive sleep apnea
requiring continuous positive airway pressure treatment,
pregnancy or breastfeeding, psychotic disorder or some other
unstable psychiatric disorder, secondary hypertension,
significant deficit in overall physical function, significant or
nonspecified valvular disease, specific medications affecting
HR and HRV (β-blockers, serotonin and noradrenaline reuptake
inhibitors, and tricyclic antidepressants), substance abuse,
symptomatic or unstable asthma, and symptomatic or unstable
disorder of the thyroid gland.

For those who were interested in participating in the study,
preliminary health screening was conducted by telephone. Then,
potentially eligible participants were invited to a preparticipation
health screening conducted by a physician with the assistance
of a nurse. The preparticipation health screening consisted of a
thorough interpretation of an individual’s medical history,
clinical status, resting blood pressure, resting ECG, and body
mass and height measurements. The antecubital venous blood
samples drawn after overnight fasting in an accredited laboratory
(FimLab Laboratoriot Oy Ltd, Jyväskylä, Finland)
complemented the health screening. The blood sampling
included the assessment of blood count, lipid profile, glycemic
control, electrolyte balance, and renal function. Frequency,
intensity, and duration of both commuting and leisure-time
physical activity were obtained as a part of the screening, and
total physical activity volume was subsequently expressed as
the sum score of metabolic equivalent (MET) hours per day
[19] by using the latest available MET values [20]. Overall, the
screening focused on evaluating the individual’s signs or
symptoms; known cardiovascular, metabolic, or renal disease;
current level of physical activity; and desired exercise intensity,
as recommended [21].

Altogether, 87 individuals were eligible to participate in the
HealthBeat study according to the preparticipation health
screening. Of these 87 individuals, planned CPET of 4 (5%)
participants was canceled owing to logistic or regulatory
circumstances related to the COVID-19 pandemic; 4 (5%)
participants withdrew before the planned CPET owing to
individual reasons (back pain, lack of time, lower limb pain,
and plantar fasciitis); and 1 (1%) participant was excluded after
CPET, which unmasked clinical evidence of obstructive
coronary artery disease. Therefore, 78 participants who
performed CPET for CRF measurement also performed a
self-paced walk for CRF estimation. Among the 78 participants,
as HR and body acceleration measurements during the
self-paced walk were technically unsuccessful in the case of 4
(5%) participants, 74 (95%) participants were eventually
included in the final analyses of this study.

CPET Procedure
To complete CPET, the participants reported to a laboratory for
a visit comprising pre-exercise measurements and a graded
treadmill walking test. Before the visit, the participants were
advised to avoid strenuous physical activity and alcohol use for
at least 36 hours and any eating and consumption of coffee, tea,
cola, or other stimulative drinks for at least two hours. Body
mass and composition were measured using a bioimpedance

device (InBody770; InBody Co. Ltd) with the participant in
bare feet and light clothing. Body mass and height were used
for the calculation of BMI. Waist circumference was measured
using stretch-resistant tape at the midpoint between the superior
iliac spine and the margin of the lower rib. The circumference
was measured to the nearest 0.5 cm and the mean of 2
measurements was calculated. Resting blood pressure was
measured with an automated sphygmomanometer device
(SunTech Tango M2; SunTech Medical, Inc), and 12-lead ECG
(CardioSoft V5.02; GE Medical Systems Information
Technologies GmbH) was recorded in the supine position after
5-minute supine rest. Fingertip capillary blood was drawn to
measure blood glucose concentration (evercare genius; TaiDoc
Technology Corporation) from participants with diabetes to
confirm their pre-exercise glucose level being between 5 and
13.9 mmol/L as recommended [22].

The participants performed CPET on a treadmill
(JUOKSUMATTO OJK-1; Telineyhtymä) under the supervision
of a physician and a nurse. The USAFSAM protocol [23] was
used: the test began with 5 minutes of standing at rest, which
was followed by 3 minutes of walking at 3.2 km/h (incline 0%),
after which the walking speed was set at 5.3 km/h, and the
incline of the treadmill was then increased by 5% every 3
minutes until the participant’s volitional task failure. Exercise
cessation was followed by 5 minutes of recovery, comprising
1 minute in standing position and subsequent 4 minutes in supine
position. During CPET, breath-by-breath inspiratory and
expiratory volumes and flows were measured using a
low-resistance volume turbine (Triple V, Erich Jaeger), and
breath-by-breath inspired and expired gases were sampled
continuously at the mouth for the analysis of O2 and CO2

concentrations (Oxycon Pro Version 5.0; VIASYS Healthcare
GmbH). Before each CPET, automatic calibration of the turbine
volume transducer and gas analyzer was performed according
to the manufacturer’s guidelines. The 12-lead ECG and arterial
O2 saturation obtained using fingertip pulse oximetry (Nellcor
PM10N; Covidien Ilc) were monitored throughout CPET.
Systemic arterial blood pressure was measured with the
automated sphygmomanometer device during the last 30 seconds
of each exercise stage and before anticipated task failure near
peak exercise. The rating of perceived exertion at the end of
each exercise stage and at peak exercise was obtained (the Borg
6-20 category scale).

VO2peak, representing each participant’s directly measured CRF,
was determined as the highest value of a 30-second moving
averaging VO2 interval [24]. The participants’ measured CRF
was also characterized as the percentage of predicted VO2peak

in relation to Norwegian reference data on VO2peak (mL/kg/min)
[25]. As no Finnish reference values exist for treadmill CPET
data, the particular data set was used owing to the geographical
proximity of Norway to Finland; importantly, considerable
differences exist between different reference data sets, and this
is partly because of geographical variation [26]. To determine
whether the participants achieved VO2 plateau, a previously
described method to detect each participant’s possible VO2

plateau was used [27]: A scatter plot of VO2 versus CPET time
was first inspected for detecting deviation from linearity, and
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if evidence of such deviation was observed, a regression line
was fitted to the 4 minutes of VO2 data preceding the starting
point of the deviation. Then, the regression line was extrapolated
to the last completed 30 seconds of CPET, and if the difference
between this extrapolated VO2 value and the participant’s
VO2peak was >50% of the slope of the regression line, the
participant was concluded to demonstrate VO2 plateau.

Self-paced Walk
To complete a self-paced walk for CRF estimation, the
participants reported to an indoor hall for a beforehand
scheduled walk after CPET; the median of the gap between
CPET and the self-paced walk was 3 days with an IQR of 2 to
7 days. The participants performed a 30-minute self-paced walk
on a 200-meter indoor track under the supervision of a physician
or nurse. The distance walked in 30 minutes was documented.
During the walk, the participants wore a lightweight device
(Bodyguard 2; Firstbeat Technologies Oy) attached with 2 skin
electrodes on the chest [17] to obtain each participant’s
estimated CRF.

Wearable Device
The wearable device (Bodyguard 2; Firstbeat Technologies Oy)
worn during the 30-minute self-paced walk recorded continuous
beat-to-beat R-R intervals (ECG sampling frequency: 1000 Hz;
R-R interval accuracy: 1 ms) and triaxial body acceleration
(movement sampling frequency: 12.5 Hz), and thus provided
each participant’s estimated CRF (ie, estimated VO2peak in
mL/kg/min). The technology of the device to provide estimated
CRF has been developed by Firstbeat Technologies Oy and
relies on HR, HRV, and body acceleration signals; the method
has been described elsewhere [18]. Although the technology is
built on the known, relatively linear relationship between HR
and external workload during exercise, it does not require data
from any predetermined protocol, but allows CRF estimation
from self-paced walking periods performed in free-living
conditions. Walking periods providing the most reliable data
points and segments for CRF estimation are automatically
identified during recording, after which the reliability of the
data is automatically evaluated and then used for CRF estimation
together with individual background information including at
least age, sex, body mass, height, and either age-predicted or
known maximal HR. In this study, the background information
acquired during the CPET visit was used to obtain estimated
CRF, and thus included age, sex, body mass, height, and known
maximal HR. The exact algorithm behind the CRF estimation
technology is proprietary; thus, it is inaccessible and not
presented here.

Statistical Analysis
Descriptive statistics were used to characterize the participants.
Mean difference between the estimated and measured CRF was
quantified (difference=estimated CRF−measured CRF) and
evaluated using paired-samples 2-tailed t test. Mean absolute
error (MAE; absolute error=|estimated CRF–measured CRF|)
and mean absolute percentage error (MAPE; absolute percentage
error=[|estimated CRF–measured CRF|]/measured CRF×100%)
of the estimated CRF were calculated to describe the magnitude
of error for individual-level estimation [28]. Intraclass
correlation coefficients (ICCs) were determined to test the
overall concordance between estimated and measured CRF [29].
Bland-Altman plot complemented the validity analyses to
visually demonstrate the level of agreement between estimated
and measured CRF with 95% limits of agreement across the
whole range of CRF levels [30]. Shapiro-Wilk test (in case of
a sample size <50 participants) and Kolmogorov-Smirnov (in
case of a sample size ≥50 participants) test were used to test the
normality of the data. In case of absolute and absolute
percentage errors, nonnormally distributed subgroup-specific
data were bootstrapped (×10,000) to present the data with 95%
CIs. Data are presented as mean (SD) or mean (95% CI) for
normally distributed continuous variables, median (IQR) for
nonnormally distributed continuous variables, and n (%) for
categorical variables. Statistical analyses were performed using
IBM SPSS Statistics 26.0 (IBM), and the statistical significance
was set at P<.05.

Ethics Approval
The HealthBeat study was conducted according to the guidelines
of the Declaration of Helsinki and approved by the ethics
committee of the Central Finland Hospital District, Jyväskylä,
Finland (Dnro 23U/2018). All participants provided their oral
and written informed consent before their participation.

Results

Participants
The participants were Finns. Table 1 presents the participants’
descriptive characteristics. To complement the data in Table 1,
5% (4/74) of the participants had first-degree atrioventricular
block, but resting 12-lead ECG did not reveal any significant
rhythm or conduction abnormalities. Table 2 presents the
relevant cardiometabolic risk factors and medications used by
the participants. Overall, the participants’ CVD risk factor
profiles were heterogeneous, as shown in Tables 1 and 2.
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Table 1. Descriptive characteristics (N=74)a.

RangeDataCharacteristics

Sex, n (%)

N/Ab56 (76)Female

N/A18 (24)Male

34.8-64.555.8 (49.9-59.5)Age (years), median (IQR)

0.04-15.42.6 (1.3-4.9)Physical activity (METc hours per day), median (IQR)

Body size and composition

53.6-135.882 (16.7)Body mass (kg), mean (SD)

152-191165 (162-175)Height (cm), median (IQR)

21.9-39.928.7 (4.6)BMI (kg/m2)

35.9-84.750.8 (46.7-61.1)Fat-free mass (kg), median (IQR)

12-5133 (9)Fat percentage (%), mean (SD)

9.5-54.727.6 (10.5)Fat mass (kg), mean (SD)

74-13298 (13)Waist circumference (cm), mean (SD)

Blood samples

123-167143 (10)Hemoglobin (g/L), mean (SD)

2.8-74.9 (0.9)Total cholesterol (mmol/L), mean (SD)

1.4-5.13.1 (0.9)LDLd cholesterol (mmol/L), mean (SD)

0.9-2.41.5 (0.4)HDLe cholesterol (mmol/L), mean (SD)

0.4-41.1 (0.8-1.8)Triglycerides (mmol/L), median (IQR)

4.6-7.85.7 (5.2-6.2)Fasting glucose (mmol/L), median (IQR)

31-5038 (35-40)HbA1c
f (mmol/mol), median (IQR)

56-12584 (13)Estimated GFRg (mL/min/1.73 m2), mean (SD)

Resting hemodynamics

N/A74 (100)Sinus rhythm, n (%)

48-10567 (61-76)Heart rate (bpmh), median (IQR)

106-178135 (13)Systolic blood pressure (mm Hg), mean (SD)

64-9883 (7)Diastolic blood pressure (mm Hg), mean (SD)

aData are presented as mean (SD) for normally distributed continuous variables, median (IQR) for nonnormally distributed continuous variables, and
n (%) for categorical variables.
bN/A: not applicable.
cMET: metabolic equivalent.
dLDL: low-density lipoprotein.
eHDL: high-density lipoprotein.
fHbA1c: glycosylated hemoglobin A1c.
gGFR: glomerular filtration ratio.
hbpm: beats per minute.
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Table 2. Cardiometabolic risk factors and medications (N=74).

Data, n (%)

64 (86)Arterial hypertension

18 (24)Prediabetesa

14 (19)Type 2 diabetes

51 (69)Metabolic syndromeb

Smoking

4 (5)Yes

70 (95)No

Family history of premature heart diseasec

21 (28)Yes

47 (64)No

6 (8)Do not know

Medication

55 (74)ACEd or ARBe

18 (24)Calcium channel blockers

11 (15)Diuretics

14 (19)Statins

12 (16)Tablet treatment for diabetes

aEvidence of impaired fasting glucose (6.1-6.9 mmol/L) previously or during this study and previous evidence of impaired glucose tolerance, but no
type 2 diabetes.
bAs defined by the International Diabetes Federation [31].
cSudden cardiac death, angina pectoris, or coronary artery disease at young age (ie, men aged <55 years and women aged <65 years) in first-degree
relatives.
dACE: angiotensin-converting enzyme inhibitor.
eARB: angiotensin receptor blocker.

CPET and Self-paced Walk
Table 3 presents CPET and self-paced walk data. On the basis
of respiratory exchange ratio, rating of perceived exertion, and
percentage of age-predicted maximal HR, the participants

performed their maximal effort during CPET, whereas only
36% (27/74) of the participants achieved VO2 plateau along
with previous observations [25]. Measured VO2peak ranged from
20.1 to 49.6 mL/kg/min, and the participants represented
different CRF categories as shown in Table 3.
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Table 3. Cardiopulmonary exercise test and self-paced walk (N=74)a.

DataMethods

Cardiopulmonary exercise test

15.6 (15-16.2)Exercise time (minutes), mean (95% CI)

2.3 (2-2.8)Measured VO2peak
b (L/min), median (IQR)

30.6 (29.2-32.1)Measured VO2peak (mL/kg/min), mean (95% CI)

45.6 (44.3-46.9)Measured VO2peak (mL/kg FFMc/min), mean (95% CI)

94 (90-98)Measured VO2peak (percentage of predicted VO2peak)d, mean (95% CI)

27 (36)Achieved VO2
e plateau, n (%)

88 (75-110)Maximal VE
f (L/min), median (IQR)

1.16 (1.15-1.18)Maximal RERg, mean (95% CI)

19 (17-19)Maximal RPEh, median (IQR)

95 (95-96)SpO2
i at peak exercise (%), mean (95% CI)

172 (169-175)Maximal HRj (bpmk), mean (95% CI)

103 (102-105)Maximal HR (percentage of age-predicted maximal HR)l, mean (95% CI)

216 (210-221)Maximal systolic blood pressure (mm Hg), mean (95% CI)

94 (91-96)Maximal diastolic blood pressure (mm Hg), mean (95% CI)

CRFm category (percentage of predicted VO2peak)d, n (%)

15 (20)<80

38 (51)80-99

16 (22)100-120

5 (7)>120

Self-paced walk, mean (95% CI)

3174 (3114-3235)Walking distance (m)

30.6 (29.2-32)Estimated VO2peak (mL/kg/min)

aData are presented as mean (95% CI) for normally distributed continuous variables, median (IQR) for nonnormally distributed continuous variables,
and n (%) for categorical variables.
bVO2peak: peak O2 uptake.
cFFM: fat-free mass.
dPredicted VO2peak based on Edvardsen et al [25].
eVO2: O2 uptake.
fVE: minute ventilation.
gRER: respiratory exchange ratio.
hRPE: rating of perceived exertion.
iSpO2: arterial O2 saturation.
jHR: heart rate.
kbpm: beats per minute.
lAge-predicted maximal HR=220–age.
mCRF: cardiorespiratory fitness.

Validity of Estimated CRF in All Participants
The pooled analysis of all 74 participants revealed that the mean
difference between estimated and measured CRF was minimal
(−0.1 mL/kg/min; P=.90; Figure 1; Table 4). MAE was 3.1

mL/kg/min and MAPE was 10.4% (Table 4). In addition, ICC
(r=0.88; 95% CI 0.80-0.92) demonstrated good concordance
between the 2 methods (Table 4). According to the
Bland-Altman plot and its complementary graphs (Figure 1),
the level of agreement between estimated and measured CRF
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was similar across the whole range of CRF levels; however,
5% (4/74) of the participants had their between-method
difference beyond the 95% limits of agreement. A detailed

inspection of the characteristics of that 5% (4/74) of the
participants did not reveal any specific explanation for such
exaggerated differences (Multimedia Appendix 1 [25,31]).

Figure 1. (A) Bland-Altman plot for agreement between estimated cardiorespiratory fitness (CRF; ie, peak O2 uptake in mL/kg/min, estimated based
on a 30-minute self-paced walk) and measured CRF (ie, peak O2 uptake in mL/kg/min, measured using a cardiopulmonary exercise test) in all participants
(74/74, 100%). The solid horizontal line represents the mean of the differences between the methods, and the dashed lines represent the upper and lower
95% limits of agreement. (B) Distribution histogram of the differences between estimated and measured CRF, which are normally distributed
(Kolmogorov-Smirnov test, P=.20; Shapiro-Wilk test, P=.07). (C) Scatter plot with regression fit of the differences between estimated and measured
CRF versus the means of the estimated and measured CRF. (D) Scatter plot with regression fit of estimated CRF versus measured CRF. CRF:
cardiorespiratory fitness.
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Table 4. Mean differences between estimated CRFa (ie, peak O2 uptake in mL/kg/min, estimated based on a 30-minute self-paced walk) and measured
CRF (ie, peak O2 uptake in mL/kg/min, measured through a cardiopulmonary exercise test), mean absolute and mean absolute percentage errors of

estimated CRF, and ICCsb between estimated and measured CRF for all participants and subgroups (N=74)c.

ICC, r (95% CI)Errors, mean (95% CI)Paired-samples t testdParticipants,
n (%)

Absolute percent-
age error (%)

Absolute error
(mL/kg/min)

P valueDifference (mL/kg/min),
mean (95% CI)

0.88 (0.80 to 0.92)10.4 (8.5 to 12.5)e3.1 (2.6 to 3.7)e.90−0.1 (−1 to 0.9)74 (100)All

Sex

0.85 (0.75 to 0.91)10.5 (8 to 13.1)3 (2.3 to 3.8).96−0.03 (−1.1 to 1.1)56 (76)Female

0.87 (0.66 to 0.95)10.1 (7.2 to 13)3.4 (2.5 to 4.4).87−0.2 (−2.2 to 1.8)18 (24)Male

Age

0.85 (0.71 to 0.92)10.5 (8 to 13.5)e3.4 (2.6 to 4.3)e.30−0.7 (−2.2 to 0.7)37 (50)Below median (<55.8
years)

0.88 (0.76 to 0.94)10.4 (7.7 to 13.3)e2.9 (2.1 to 3.8)e.330.6 (−0.7 to 1.9)37 (50)Above median (>55.8
years)

BMI (kg/m2)

0.79 (0.44 to 0.92)10.5 (6.9 to 14.6)e3.7 (2.4 to 5.2)e.23−1.4 (−3.7 to 1)18 (24)<25

0.82 (0.62 to 0.91)10.4 (7.1 to 14.4)e3.2 (2.3 to 4.3)e.530.5 (−1.1 to 2.1)30 (41)25-29.99

0.81 (0.57 to 0.91)10.4 (7.6 to 13.2)2.6 (1.9 to 3.3).740.2 (−1.1 to 1.5)26 (35)≥30

0.88 (0.80 to 0.93)9.7 (8 to 11.6)e3 (2.4 to 3.6)e.24−0.6 (−1.5 to 0.4)64 (86)Arterial hypertension

Glucose metabolism

0.91 (0.84 to 0.95)8.5 (6.7 to 10.3)2.8 (2.1 to 3.4)e.21−0.7 (−1.7 to 0.4)42 (57)Normal

0.88 (0.66 to 0.95)10.2 (7.1 to 14)e3.2 (2.1 to 4.5)e.66−0.4 (−2.5 to 1.6)18 (24)Prediabetesf

0.66 (0.03 to 0.89)16.5 (8.6 to 24.4)4.2 (2.6 to 6.1)e.122.3 (−0.7 to 5.2)14 (19)Type 2 diabetes

0.82 (0.69 to 0.90)10.8 (8.2 to 13.3)3.0 (2.3 to 3.7).220.7 (−0.4 to 1.7)51 (69)Metabolic syndromeg

aCRF: cardiorespiratory fitness.
bICC: intraclass correlation coefficient.
cData are presented as mean (95% CI) for the differences and errors and r (95% CI) for ICC.
d2-tailed.
eBootstrapped (×10,000) owing to originally nonnormally distributed data.
fEvidence of impaired fasting glucose (6.1-6.9 mmol/L) previously or during this study and previous evidence of impaired glucose tolerance, but no
type 2 diabetes.
gAs defined by the International Diabetes Federation [31].

Validity of Estimated CRF in Subgroups
Data related to the validity of estimated CRF in different
subgroups are presented in Table 4. The data show that the CRF
estimation method was likely to provide similar accuracy in
women and men and across age and BMI categories, when
comparing with the data on all participants (Table 4). This was
also evident in the participants with hypertension, normal
glucose metabolism, prediabetes, and metabolic syndrome
(Table 4). In contrast, the participants with type 2 diabetes
demonstrated lower estimation accuracy than other subgroups;
for example, MAPE was 16.5% in those with type 2 diabetes
(Table 4). The accuracy of the CRF estimation method was
equally good in 36% (27/74) of the participants who achieved
VO2 plateau at the end of CPET and in 64% (47/74) of the

participants who did not achieve it (eg, MAE was 3.3
mL/kg/min, 95% CI 2.3-4.4 and 3 mL/kg/min, 95% CI 2.4-3.8,
respectively; MAPE was 10.4%, 95% CI 7.2-13.9 and 10.4%,
95% CI 8.2-13, respectively).

Discussion

Principal Findings
Wearable technology provides a strategy to estimate CRF as
part of routine clinical practice. In this study, we estimated the
CRF of working-aged adults with heterogeneous CVD risk
factor profiles with a technology that uses wearable device data
on HR, HRV, and body acceleration monitored during self-paced
walking. We tested the validity of the technology by comparing
the participants’ estimated CRF with their CRF measured
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directly by ventilatory gas analysis during CPET. For all
participants (74/74, 100%), the mean difference between
estimated and measured CRF was −0.1 mL/kg/min, MAE was
3.1 mL/kg/min, MAPE was 10.4%, and average ICC was 0.88,
reflecting high accuracy of the examined method to estimate
CRF. In subgroup analyses, similar accuracy of the CRF
estimation method was observed in both sexes, different age
and BMI categories, patients with hypertension, patients with
prediabetes, and patients with metabolic syndrome. However,
the technology did not provide equally accurate CRF estimation
in the small subgroup of patients with type 2 diabetes (14/74,
19%), in whom MAE and MAPE were 4.2 mL/kg/min and
16.5%, respectively.

Comparison With Previous Studies
CRF, quantified as an individual’s maximal VO2 or VO2peak,
reflects the integrated capacity of the respiratory, cardiovascular,
and skeletal muscle systems to take up, transport, and use O2

[5], and thus it has normal physiological variation. Studies that
have examined the test-retest repeatability of CPET parameters
in healthy populations have observed the coefficient of variation
of directly measured VO2peak to be approximately 5% [32,33].
Such a level of test-retest repeatability is not attained in patient
populations. The coefficient of variation of directly measured
VO2peak has varied between 6% and 9% in various patient
populations such as patients with chronic obstructive pulmonary
disease [34], heart failure [34,35], peripheral arterial disease
[36], pulmonary arterial hypertension [37], or severe mitral
valve disease [34]. In light of these findings, it may be postulated
that the MAPE of the CRF estimation method could have ideally
been between 5% and 9% in this study, which included a patient
cohort with frequent cardiovascular risk factors and medications.
Thus, as the MAPE of estimated CRF varied between 8.5% and
10.8% in both the pooled cohort and all subgroups in this study,
except for the patients with type 2 diabetes, the accuracy of the
method to estimate CRF can be considered to be acceptable in
terms of the inevitable physiological variation of CRF.

Wearable technology provides an approach to estimate CRF
for routine individualized risk prediction in everyday clinical
practice. The validity of several wearable technologies that
provide CRF estimations has been studied [12-16]. Similar to
the CRF estimation method examined in this study, most of the
technologies have used HR and body acceleration data
[12,14-16], whereas some technologies combine HR and body
acceleration data with data from respiratory bands [13]. MAPE
of such estimates has ranged from 8% to 10.2% [14,15]. From
the clinical perspective, it is important to note that the
participants in most of those studies were healthy and relatively
young and fit [12-15]; however, one such study has also included
9 individuals aged >50 years and 7 individuals who were obese
[16]. In consequence, the need for validation studies including
clinically relevant populations (eg, older people, individuals
who are obese, and individuals with chronic diseases) has been
highlighted [12,14,15]. In this regard, it is noteworthy that,
when compared with the previously reported accuracies of the
other technologies, the accuracy of the CRF estimation method
examined in this study was similar and particularly did so in

the clinically relevant cohort with heterogeneous and
comprehensively reported CVD risk profiles.

The accuracy of the CRF estimation method was lower for the
participants with type 2 diabetes (14/74, 19%) than for the
pooled study cohort or other subgroups. For instance, MAE was
4.2 mL/kg/min and MAPE was 16.5% for the participants with
diabetes. Patients with diabetes are prone to cardiac autonomic
neuropathy, the signs and symptoms of which include reduced
HRV, resting tachycardia, abnormal blood pressure regulation,
orthostatic hypotension, orthostatic tachycardia or bradycardia,
chronotropic incompetence, and exercise intolerance [38]. In
addition, exaggerated HRV complexity during CPET has been
observed in working-aged adults with well-controlled type 1
diabetes [39]. Although the prevalence of diabetes-related
cardiac autonomic neuropathy increases with diabetes duration
and may be evident in 60% of patients with type 2 diabetes after
15 years, cardiac autonomic neuropathy may also be
asymptomatic and manifest only as reduced HRV [38]. Thus,
it may be that the reduced accuracy of the CRF estimation
method in the type 2 diabetes subgroup was owing to early
diabetes-related disturbances in cardiac autonomic modulation,
although the participants with type 2 diabetes had good glycemic
control in terms of glycosylated hemoglobin A1c, short diabetes
duration (from 0.5 to 4.4 years), and no previous evidence of
autonomic neuropathy. Importantly, the accuracy of the CRF
estimation method was not reduced in the subgroups with
prediabetes or metabolic syndrome. This suggests that the
method provides an accurate estimation of CRF in the 2
clinically relevant patient groups; however, this may not be the
case for patients with both metabolic syndrome and type 2
diabetes. Overall, as the subgroup with type 2 diabetes included
only 19% (14/74) of the participants, future validation studies
including large number of patients with diabetes are warranted.

The findings of this study have relevant clinical applicability.
As epidemiological evidence shows that CRF independently
predicts incidence and mortality of not only CVD but also
respiratory diseases and cancer and all-cause mortality [2-4],
determining CRF as a vital sign in routine clinical practice as
recommended may lead to several health benefits [6]. For
example, identifying individuals with low CRF and thus
increased risk for adverse health outcomes may guide health
care providers to target more intensive preventive interventions
at such individuals. CRF can be used as a medium for facilitating
discussions about individual health concerns and lifestyle
modification, and determined CRF can also be added to classic
risk algorithms to improve the accuracy of individual risk
prediction [6,40]. For such daily clinical purposes, the feasibility
to use CPET may be limited by requirements related to costs,
expertise, resources, and effort dependency [7]. In addition, the
feasibility to use exercise-based prediction equations for
individualized clinical decision-making is limited by the
accuracy of such equations. This was recently demonstrated by
Peterman et al [10], who reported limited accuracy levels of 2
nonexercise (SE of estimate [SEE] 4.9 mL/kg/min), 3
submaximal exercise (SEE 7-9.1 mL/kg/min), and 10 maximal
exercise equations (SEE 3.6-5.6 mL/kg/min; except for 1
equation with SEE of 2.5 mL/kg/min). Regarding the CRF
estimation method examined in this study, MAE was 3.1
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mL/kg/min in the pooled study cohort and 2.6 to 3.7 mL/kg/min
in each subgroup, except for the participants with type 2
diabetes. Thus, the overall level of accuracy was higher than
the recently reported levels of the prediction equations [10]. In
addition, although approximately one-third (27/74, 36%) of
participants had their absolute error >1 MET (ie, >3.5
mL/kg/min), MAE of 3.1 mL/kg/min was <1 MET, which is
noteworthy because even +1 or –1 MET translates into
prognostically significant CRF deviation [6]. Furthermore, the
Bland-Altman plot and its complementary analyses (Figure 1)
demonstrate that the level of accuracy was similar across the
whole range of CRF levels. In summary, the accuracy of the
CRF estimation method may be considered as likely sufficient
for individualized clinical decision-making, irrespective of the
individual’s CRF level.

Strengths and Limitations
The main strength and the main novelty of this study reside in
the characteristics of the participants: The working-aged adults
comprised a clinically relevant cohort with frequent
cardiovascular risk factors (eg, hypertension and impaired
glucose metabolism) and common medications (eg,
angiotensin-converting enzyme inhibitors, angiotensin receptor
blockers, statins, and metformin). The need for strategies to
estimate CRF with clinically acceptable accuracy in such
individuals has been highlighted [6,12,14,15]. The cohort size
was also relatively large compared with previous similar
validation studies examining healthy individuals [12-16];
however, the sex distribution was not optimally balanced
(women: 56/74, 76% and men: 18/74, 24%). An important
limitation of this study is that CRF was estimated based on a
standard 30-minute self-paced walk. Thus, the validity of the
CRF estimation method remains to be tested under completely
free-living conditions. In addition, the risk of recruitment bias
may not be optimally avoided, as the median volume of total
physical activity of the participants was 2.6 MET hours per day,
which approximately corresponds, for example, to 30 minutes
of moderate-intensity aerobic activity per day [41]. This may

reflect the tendency for physically active individuals to volunteer
for this type of study that includes exercise provocations.
However, the average CRF of the participants was 94% of
predicted, the participants represented a wide spectrum of
different CRF categories, and importantly, the accuracy level
of the CRF estimation method was similar across the measured
VO2peak range of 20.1 to 49.6 mL/kg/min. Thus, the findings
and conclusions of this study can be generalized to working-aged
adults with frequent cardiovascular risk factors and VO2peak >20
mL/kg/min but without the exclusion criteria of this study.

Conclusions
We estimated the CRF of 74 working-aged adults with
heterogeneous CVD risk factor profiles with a technology that
uses wearable device data on HR, HRV, and body acceleration
monitored during self-paced walking. After comparing the
participants’ estimated CRF with their directly measured CRF,
we conclude that, in populations comparable with the cohort
examined in this study, the error of the CRF estimate is likely
below or at least very close to 1 MET. This is relevant because
even +1 or –1 MET translates into prognostically significant
CRF deviation [6]. Such accuracy was observed in the pooled
study cohort and various subgroups including both sexes,
different age and BMI categories, patients with hypertension,
patients with prediabetes, and patients with metabolic syndrome,
but not in a small subgroup of patients with type 2 diabetes
(14/74, 19%). Future studies are warranted to examine the
validity of the method in large type 2 diabetes cohorts, under
completely uncontrolled free-living conditions, and in test-retest
and longitudinal settings to evaluate whether the method can
be used for clinical follow-up purposes.

From a large-scale clinical perspective, this study suggests that
wearable technologies may have the potential to estimate
individual CRF with acceptable accuracy in clinically relevant
populations and thus aid in improving the prediction of
individual risk for adverse health outcomes such as adverse
CVD events.
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CPET: cardiopulmonary exercise test
CRF: cardiorespiratory fitness
CVD: cardiovascular disease
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HealthBeat: Heart rate variability analytics to support behavioral interventions for chronic disease prevention
and management
HR: heart rate
HRV: heart rate variability
ICC: intraclass correlation coefficient
MAE: mean absolute error
MAPE: mean absolute percentage error
MET: metabolic equivalent
SEE: SE of estimate
VO2: O2 uptake
VO2peak: peak O2 uptake
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