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Abstract

Background: Many machine learning approaches are limited to classification of outcomes rather than longitudinal prediction.
One strategy to use machine learning in clinical risk prediction is to classify outcomes over a given time horizon. However, it is
not well-known how to identify the optimal time horizon for risk prediction.

Objective: In this study, we aim to identify an optimal time horizon for classification of incident myocardial infarction (MI)
using machine learning approaches looped over outcomes with increasing time horizons. Additionally, we sought to compare the
performance of these models with the traditional Framingham Heart Study (FHS) coronary heart disease gender-specific Cox
proportional hazards regression model.

Methods: We analyzed data from a single clinic visit of 5201 participants of a cardiovascular health study. We examined 61
variables collected from this baseline exam, including demographic and biologic data, medical history, medications, serum
biomarkers, electrocardiographic, and echocardiographic data. We compared several machine learning methods (eg, random
forest, L1 regression, gradient boosted decision tree, support vector machine, and k-nearest neighbor) trained to predict incident
MI that occurred within time horizons ranging from 500-10,000 days of follow-up. Models were compared on a 20% held-out
testing set using area under the receiver operating characteristic curve (AUROC). Variable importance was performed for random
forest and L1 regression models across time points. We compared results with the FHS coronary heart disease gender-specific
Cox proportional hazards regression functions.

Results: There were 4190 participants included in the analysis, with 2522 (60.2%) female participants and an average age of
72.6 years. Over 10,000 days of follow-up, there were 813 incident MI events. The machine learning models were most predictive
over moderate follow-up time horizons (ie, 1500-2500 days). Overall, the L1 (Lasso) logistic regression demonstrated the strongest
classification accuracy across all time horizons. This model was most predictive at 1500 days follow-up, with an AUROC of
0.71. The most influential variables differed by follow-up time and model, with gender being the most important feature for the
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L1 regression and weight for the random forest model across all time frames. Compared with the Framingham Cox function, the
L1 and random forest models performed better across all time frames beyond 1500 days.

Conclusions: In a population free of coronary heart disease, machine learning techniques can be used to predict incident MI at
varying time horizons with reasonable accuracy, with the strongest prediction accuracy in moderate follow-up periods. Validation
across additional populations is needed to confirm the validity of this approach in risk prediction.

(JMIR Cardio 2022;6(2):e38040) doi: 10.2196/38040
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Introduction

Cardiovascular disease (CVD) is the leading cause of morbidity
and mortality in the United States and worldwide. The
prevalence of CVD in adults within the United States has
reached 48% and greater than 130 million adults in the United
States are projected to have CVD by 2035, with total costs
expected to reach US $1.1 trillion [1]. The leading cause of
deaths attributable to CVD are from coronary heart disease,
followed by stroke, hypertension, and heart failure [1]. This
year alone, roughly 605,000 Americans will have an incident
myocardial infarction (MI) and greater than 110,000 will die
from MI [1]. Given the high prevalence of MI, there is
significant focus on identifying those most likely to develop
incident coronary heart disease [2-5]. If properly identified,
primary preventive pharmacologic and lifestyle strategies can
be applied to those at the highest risk [6].

Historically, risk prediction models have been developed by
applying traditional statistical models (ie, regression-based
models and Cox) to cohort data [7-10]. These analyses have
provided a breadth of information about the risk of CVD and
have been very useful clinically, given their straightforward
relationships between a small number of variables and the
outcome of interest [11-16]. However, these risk scores often
do not achieve high reliability when applied to novel data sets
[10,17]. Currently, roughly half of MIs and strokes occur in
people who are not predicted to be at an elevated risk for CVD
[18].

Machine learning has been introduced as a novel method for
processing large amounts of data, focused primarily on accurate
prediction rather than understanding the relative effect of risk
factors on disease. In some applications, machine learning
methods have been found to improve upon traditional regression
models for predicting various cardiovascular outcomes [19-22].
A key aspect of applying machine learning methods is the
bias-variance trade-off or balancing how accurately a model
fits the training data (bias) and how well it can be applied
broadly (variance) in out-of-sample testing or validation data
[23]. Machine learning models tend to excel when dealing with
a large number of covariates and nonlinear or complex
relationships of covariates, often at the expense of overfitting
a particular training set [24]. However, with an increased ability
to model complex interactions between covariables comes a
decrease in understanding how risk factors relate to an outcome.
Additionally, one key limitation of many machine learning
methods is that they are often classification models that do not
include well-developed methods to incorporate information

about time-to-event data. Investigators often select a single time
horizon for classification, but how varying time horizons affect
the relative prediction accuracy is a relatively unexplored aspect
of machine learning methods. We hypothesize that there is a
trade-off in the selection of the predictive time horizon, in which
the use of shorter time horizons offers an increased relevance
of predictors to outcomes and greater effect sizes. This is
balanced against an increase in the number of events when the
time horizon is of longer duration. Based on this trade-off, we
would predict that moderate time horizons would have the
highest predictive accuracy.

With this investigation, we examined the impact of varying time
horizons on the prediction of incident MI. Using data from the
Cardiovascular Health Study (CHS) [25], we examined the
predictive accuracy of multiple machine learning algorithms
over varying time frames of 500 days through 10,000 days of
follow-up to identify incident MI. Additionally, we used the
Framingham Heart Study (FHS) coronary heart disease
gender-specific Cox proportional hazards regression model for
comparison to the machine learning models. We aimed to find
what time horizon would have the highest predictive accuracy
and examine how this compared with the prediction accuracy
of the FHS regression model.

Methods

Ethical Considerations
Data were approved for use by the Cardiovascular Health Study
Policies and Procedures Committee with accompanying data
and materials distribution agreement.

Data Set Creation
We used anonymized data from the CHS [25], the design and
objectives of which have been previously described. Briefly,
the CHS is a longitudinal study of men and women aged 65
years or older, recruited from a random sample of
Medicare-eligible residents of Pittsburgh, PA, Forsyth County,
NC, Sacramento, CA, and Hagerstown, MD. The original cohort
of 5201 participants was enrolled in 1989-1990 and serves as
the sample for this study. Baseline data were obtained in this
cohort, and routine clinic visits and telephone interviews were
conducted periodically going forward.

We excluded patients with a baseline history of prior MI from
the cohort. We examined 61 variables collected from the
baseline exam, including demographic and biologic data (Table
S1 in Multimedia Appendix 1).
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Using an end point of incident MI, we applied multiple machine
learning methods across varying time horizons to define an
optimal risk prediction. Missing variable data was quite
uncommon for baseline demographic and laboratory data.
Although overall infrequent, missing data was more common

for electrocardiogram variables. In these cases of missing data,
imputation was performed on missing variables using median
value replacement for continuous variables and most common
replacement for categorical variables (Figure 1).

Figure 1. Analysis flowchart. CHD: Cardiovascular Health Study.

Statistical Analysis
The data set was randomly split into a training set (80%) and a
testing or validation set (20%). The training data set was used
to construct 5 machine learning models: random forest, L1
(LASSO) regression, support vector machine, k-nearest
neighbor, and gradient boosted decision tree. Hyperparameter
tuning to identify the optimal values for parameters that are not
learned during the training process was performed using the
validation set. These models were then applied to the test set to
examine model performance, which was assessed using an area
under the receiver operating characteristic curve (AUROC).
Additionally, we used the FHS coronary heart disease Cox
proportional hazards regression model as a comparison to the
machine learning models (Table S2 in Multimedia Appendix
1) [7,9,26].

Starting at 500 days, we looped each model over 500-day time
horizons in order to identify the optimal predictive horizon up
through 10,000 days of follow-up time. For each time horizon,
variable importance algorithms were applied to the L1 regression
and random forest models. In the L1 regression model,
coefficients that are less helpful to the model were shrunk to
zero, thereby removing unneeded variables altogether. The
remaining coefficients are the variables selected. Because
models use normalized inputs, direct comparison of coefficients
can be performed based on the absolute value of the average
coefficient for each input. In the random forest algorithm, we
performed a “permutation” feature selection, which measures
the prediction strength of each variable by measuring the

decrease in accuracy when a given variable is essentially voided
within the model.

Preliminary analyses identified a high degree of bias related to
the cases that were selected within the held-out split sample,
and so we performed 50 analyses with different random seeds,
with separate results stored for each model, time horizon, and
seed number (a total of 1000 separate models for each type of
model). Results were compiled based on the average AUROC,
coefficient value (L1 regression), and impurity or accuracy
(random forest) for each model. Model comparison was
performed using linear mixed effects models, with seed number
as the random effect and unstructured covariance matrix pattern.

All modeling was performed using publicly available packages
on R software (version 1.1.463; The R Foundation for statistical
computing). The code used for analysis is provided in
Multimedia Appendix 1. Model comparisons (mixed effects
models) were performed using Stata IC (version 14; Stata, Inc).

Results

Baseline characteristics of the study participants are presented
in Table 1. There were a total of 4190 participants included.
The average age of the cohort was 72.6 years, and 2522 (60.2%)
participants were female. At baseline, 2201 (53 %) had a history
of ever using tobacco, 2300 (55%) had a diagnosis of
hypertension, and 389 (9.3%) had a diagnosis of diabetes. Over
30 years of follow-up, there were 813 incident MI events at a
median follow-up time of 4725 days.
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Table 1. Baseline Characteristics of the study participants.

Values (N=4190)Characteristics

72.6 (5.6)Age (years), mean (SD)

1668 (39.8)Gender (male), n (%)

2201 (53)Tobacco consumption, n (%)

2300 (55)Hypertension, n (%)

389 (9.3)Diabetes, n (%)

211 (38)Total Cholesterol (mg/dL), mean (SD)

26.4 (1.9)BMI, mean (SD)

Comparison of Prediction Models Across Time
Horizons
Relative performance of the machine learning methods and FHS
model is displayed in Figure 2 as the AUROC across cut points
for the time horizon. The machine learning models were
generally most predictive over moderate time horizons of
1500-2500 days of follow-up.

In addition to examining AUROC, we also examined the area
under the precision-recall curve (Figure 3), which favored later
time horizons, but with no change in the order of model
performance. The L1 regression model still had the highest
performance across time points.

The L1 logistic regression was overall the most predictive across
all time points (Figure 4) and displayed the highest prediction
accuracy at 1500-day time horizon with an AUROC of 0.71.
The k-nearest neighbor model performed relatively poorly across
all time points.

When compared with the FHS model, the L1 model performed
worse at 500 days of follow-up but had superior prediction
accuracy at all subsequent follow-up times. The random forest
model performed better than the FHS model starting at 1500
days of follow-up and longer. The remaining machine learning
models were less predictive than the FHS model across all time
frames (Figure 2).

Figure 2. Predictive accuracy over varying time horizons. FHS: Framingham Heart Study; KNN: k-nearest neighbor; RF: random forest; ROC: receiver
operating characteristics; SVM: support vector machine.
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Figure 3. Predictive Accuracy using area under precision-recall curve. KNN: k-nearest neighbor; PR: precision-recall; RF: random forest; SVM: support
vector machine.

Figure 4. Prediction accuracy across all time horizons. AUC: area under the curve; KNN: k-nearest neighbor; RF: random forest; SVM: support vector
machine.
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Feature Selection
Some machine learning algorithms allow for analysis of variable

contributions to the model. For this analysis, feature importance
was performed across all time points for the L1 regression and
random forest models (Table 2).

Table 2. Feature selection (top features).

Long-term follow-up (>2500 days)Intermediate follow-up (1500-2500 days)Short-term follow-up (500-1000 days)Model

L1 regression ••• Gender (0.50)Gender (1.03)Gender (0.90)
• ••Calcium channel blockers (0.47) Calcium channel blockers (0.33)Diabetes mellitus (0.33)

••• Diabetes mellitus (0.20)Calcium channel blockers (0.42)IVCDa by ECGb (0.40)
• Hypertension (0.27)• Diabetes mellitus (0.32)
• Alcohol (per week) (–0.21)• Smoking (0.22)

• Systolic blood pressure (0.21)

Random forest ••• WeightWeightWeight
• ••FEV1c Total cholesterolFEV1

•• BMIBMI• BMI
•• HeightHeight• Height
•• LDL-CGender• LDL-Cd

aIVCD: intraventricular conduction delay.
bECG: electrocardiogram.
cFEV1: forced expiratory volume in one second.
dLDL-C: low-density lipoprotein cholesterol.

For the L1 regression, the most important variables (based on
the absolute value of coefficients applied to normalized inputs)
at short-term follow-up intervals (ie, <1000 days) were gender,
history of diabetes, use of calcium channel blockers or
β-blockers, and having a ventricular conduction defect by
electrocardiogram. At intermediate follow-up interval (ie,
1500-2500 days), the most important variables were gender,
use of calcium-channel blocker, history of diabetes, and history
of hypertension. At longer follow-up times (ie, >2500 days),
the most important variables were gender, use of calcium
channel blocker, and history of diabetes.

For the random forest variable selection based on accuracy, the
most important variables at short-term follow-up intervals (ie,
<1000 days) were weight, forced expiratory volume (FEV) by
pulmonary function testing, BMI, height, and low-density
lipoprotein (LDL) cholesterol. At intermediate follow-up interval
(1500-2500 days), the most important variables were weight,
FEV, BMI, height, and gender. At longer follow-up times (ie,
>2500 days), the most important variables were weight, height,
BMI, LDL cholesterol, and total cholesterol.

Discussion

Principal Findings
This study demonstrates the ability to use machine learning
methods for the prediction of incident MI over varying time
horizons in cohort data. Using AUROC as the primary metric
for model performance, prediction across all models was most
accurate in the moderate (ie, 1500-2500 day) follow-up horizon.
The L1 regularized regression provided the most accurate
prediction across all time frames, followed by the random forest
algorithms. These two models compared favorably to the FHS
coronary heart disease prediction variables, especially at longer
follow-up intervals. Applying ranked variable importance

algorithms demonstrated how the variables selected differed
over time and in different models.

Prediction was most accurate in the moderate follow-up horizon.
We suspect that this was due to the balance of accumulating
enough events while still being close in time to the baseline
data collected. A predictor that is measured closer in time to
the outcome is more likely to be relevant in prediction, and as
more events accumulate over time, the power to identify a
predictive model increases. Prior studies have looked at machine
learning prediction of coronary heart disease at short and
intermediate follow-up times; however, to our knowledge, this
is the first study to apply models to annual time horizons from
short- to long-term follow-up [27].

The L1 regularized regression generally provided the most
accurate prediction across all time frames. These regularized
regression models expand upon traditional regression models
by searching across all variables for the best subset of predictors
prior to fitting a regression model. An L1 (Lasso) regression
differs from other regularized regression models in that it can
shrink the importance of many variables to zero, allowing for
feature selection in addition to preventing overfitting. As such,
it is very useful when using many variables, like in a cohort or
electronic health record data. Prior studies have found these
models to be comparable to more advanced machine learning
methods for predicting clinical outcomes [28]. The random
forest model also performed quite well. Random forest is a
regularized form of classification and regression tree model that
searches for the covariates that best split the data based on
outcome, and then continues to split using additional covariates
until many decision “trees” are formed. These models avoid
overfitting and can also overcome nonlinearity and handle many
variables. The accuracy of the L1 regression and random forest
prediction models based on AUROC is reasonable in our study
in comparison to prior work [29]. It is worthy of note that we
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did not include interaction or polynomial terms in the L1
regression, and as such, this model would not be able to identify
nonlinear effects between predictors in the same manner as
random forest. Our finding that L1 regression provided superior
predictive accuracy despite this limitation suggests that nonlinear
effects may be less important with these predictors for coronary
artery disease or MI, although further work would be needed
to support this claim.

With machine learning models, the relationship between any
one variable and the outcome is not as clear as with standard
regression models. However, some methods can provide the
relative importance of each variable to the model creation. We
performed ranked variable analysis for the L1 regression and
random forest models. We found that, generally, the models
found traditional risk factors to be the most important; however,
these most important variables changed over time.

The random forest variable importance found weight, height,
LDL-cholesterol, and BMI to be highly important across time
frames. FEV was important in short- and medium-term
follow-up but less important in longer-term follow-up. For the
L1 regression, gender, history of diabetes, and the use of calcium
channel blockers were important variables across all time
horizons. Although these associations are interesting, causation
cannot be applied to these analyses, and it can only suggest
further study on the importance of these variables.

Limitations
This study has some notable limitations. First, the CHS [25]
data for incident MI are failure time data, and our model does

not allow for censored observations due to lack of follow-up.
Second, both testing and validation were performed only within
the CHS cohort. Although on the one hand, this is an important
examination of a specific population, it limits the applicability
of our findings to the global population. Machine learning
models are very sensitive to the training population and have
been found to be biased when created in one population and
applied in another. Since the CHS cohort is composed of
individuals over the age of 65 years, this analysis provides an
opportunity to study machine learning models in this group.
We used the original cohort of 5201 participants enrolled in the
CHS, which leaves out a subsequent, predominantly African
American cohort, making the results less applicable to the global
population. Given these limitations, this analysis needs to be
validated in novel cohorts. Additionally, this model cannot
easily be directly applied to clinical practice; however, this
study presents a model for performing similar analysis in more
clinically applicable data sets, including electronic health record
data. We aim to accomplish this with future studies.

Conclusions
In a population free of coronary heart disease, machine learning
techniques can be used to accurately predict development of
incident MI at varying time horizons. Moderate follow-up time
horizons appear to have the most accurate prediction given the
balance between proximity to baseline data and allowing ample
number of events to occur. Future studies are needed to validate
this technique in additional populations.
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