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Abstract

Background: Limited data accuracy is often cited as a reason for caution in the integration of physiological data obtained from
consumer-oriented wearable devices in care management pathways. The effect of decreasing accuracy on predictive models
generated from these data has not been previously investigated.

Objective: The aim of this study is to simulate the effect of data degradation on the reliability of prediction models generated
from those data and thus determine the extent to which lower device accuracy might or might not limit their use in clinical settings.

Methods: Using the Multilevel Monitoring of Activity and Sleep in Healthy People data set, which includes continuous free-living
step count and heart rate data from 21 healthy volunteers, we trained a random forest model to predict cardiac competence. Model
performance in 75 perturbed data sets with increasing missingness, noisiness, bias, and a combination of all 3 perturbations was
compared to model performance for the unperturbed data set.

Results: The unperturbed data set achieved a mean root mean square error (RMSE) of 0.079 (SD 0.001) in predicting cardiac
competence index. For all types of perturbations, RMSE remained stable up to 20%-30% perturbation. Above this level, RMSE
started increasing and reached the point at which the model was no longer predictive at 80% for noise, 50% for missingness, and
35% for the combination of all perturbations. Introducing systematic bias in the underlying data had no effect on RMSE.

Conclusions: In this proof-of-concept study, the performance of predictive models for cardiac competence generated from
continuously acquired physiological data was relatively stable with declining quality of the source data. As such, lower accuracy
of consumer-oriented wearable devices might not be an absolute contraindication for their use in clinical prediction models.

(JMIR Cardio 2023;7:e40524) doi: 10.2196/40524
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Introduction

There are numerous devices available within hospital settings
to continuously monitor patients’ physiological signs, track
disease progression, or perform diagnostics. In recent years,
there has been increased interest in extending the use of these
devices to the outpatient setting [1]. For this purpose, such

devices are well accepted by patients and physicians and are
generally seen as an important component of future clinical
protocols [1-3]. There are two major categories of outpatient
monitoring device: medical-grade and consumer-oriented
devices. The advantages of consumer-oriented devices are
obvious—they are often less expensive, they are ubiquitous,
and their use is not dependent on a person’s medical need.
Moreover, such devices allow data to be acquired continuously,
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passively, and without the need for standardized protocols or
deviation from normal daily routine—all factors that have been
associated with reduced adherence to outpatient monitoring [4].
However, contrary to their medical-grade counterparts, which
are made to replicate the functionality and reliability of
in-hospital devices, consumer-oriented devices are built for
other purposes, which may affect the quality of the data that
they generate. Numerous studies have shown limited
equivalence between the data generated from consumer-oriented
devices and the data acquired using standardized protocols
involving their medical-grade counterparts [5-8]. Given these
limitations, and although the reliability of data from newer
consumer-oriented devices has greatly increased, some have
advocated caution in the use of consumer-grade wearable
devices for clinical monitoring when the intent is to integrate
the data directly into care management [9]. One emerging
application of data generated from physiological-monitoring
devices is using them to produce features in prediction models
based on machine learning algorithms, as opposed to the
detection of abnormalities and direct integration in care
management pathways [10]. In this context, the effect of
decreasing data quality and reliability has not been previously
studied. In this study, our aim was to investigate the practicality
of using consumer-grade monitoring devices in medical care
by determining the effect of various common forms of
time-series data degradation on the performance of the predictive
models generated using those data.

Methods

Study Data
Data were obtained from the open-access Multilevel Monitoring
of Activity and Sleep in Healthy People (MMASH) data set
made available by Rossi et al [11] on PhysioNet [11,12]. These
data were collected through a collaboration between BioBeats
and researchers at the University of Pisa. The MMASH data set
includes 1 day of activity and sleep data for 22 healthy young
adult males. During the 24-hour data collection period, the
participants wore a heart rate (HR) monitor (Polar H7) and an
activity monitor (ActiGraph wGT3X-BT). The participants were
also asked to record specific times and categories (eg, sleeping,
sitting, and heavy exercise) of activity that they performed
throughout the day [11]. For the purposes of this secondary
analysis, pertinent raw data from this data set included
demographic information, step count data from the activity
monitor, beat-to-beat intervals (or N-N intervals [NNIs]) from
the HR monitor, and activity categories as reported by
participants. One of the participants was removed from the
analysis due to incomplete information.

Data Processing and Feature Extraction
All MMASH data were downloaded from PhysioNet. The first
5 minutes of the activity monitor and HR monitor data were
removed to account for the initial placement and adjustment of
the devices. Per-minute step count (PMSC) was calculated for
each participant by summing the number of steps taken in
sequential 60-second periods. PMSC data during sleep hours
for all of the participants was removed from the analysis, as
these time series were flat and did not provide predictive value.

Three features were used to summarize the PMSC data for each
participant, which were maximum PMSC, median PMSC, as
well as 25th and 75th percentiles in PMSC. HR measurements
were calculated as the quotient of 60 divided by the NNI values.
These HR values were then transformed to beats per minute by
averaging them in sequential 60-second periods. Any values in
the HR time series less than 35 beats per minute were set equal
to 35 (lowest plausible value in the data set). Next, various HR
variability statistics were calculated for each participant based
on the Python code published by the research team responsible
for the MMASH data set [13]. Time-domain features were
calculated relating to NNIs (median, mean, standard deviation,
root mean square, range, and percentage of differences greater
than 50) and HRs (maximum, minimum, mean, and standard
deviation) recorded by the HR monitor. Various
frequency-domain features relating to HR variability were also
computed for each participant, such as very low-frequency
power (0.003 to 0.04 Hz), low-frequency power (0.04 to 0.15
Hz), high-frequency power (0.15 to 0.40 Hz), ratio of
low-frequency power to high-frequency power, normalized
low-frequency power, and normalized high-frequency power.
Lastly, several features were extracted from a Poincaré plot of
the NNIs, as follows: standard deviation of a projection onto
the line perpendicular to the line of identity, standard deviation
of the projection onto the line of identity, and the ratio of these
two standard deviations [13].

Two R packages, tsfeatures and tsfeaturex, were employed to
extract various higher-dimensional features from the time-series
data including per-minute HR, NNIs, and PMSC. The extracted
features included autocorrelation, partial and differential
autocorrelations, probabilities of acute changes when the time
series is lagged, and time series quantiles. A total of 87 features
were extracted for each time series feature using these packages.

Study Outcome
For each patient, we calculated the cardiac competence index
(CCI) to be used as the target for prediction models. The CCI
used in this study is based on the concept for cardiac competence
limit proposed by Wu et al [14]; however, it was modified to
be calculable with the data available in this study. In short, using
activity information, data were isolated for periods of rest (ie,
lying down or sitting) and periods of heavy exercise. Baseline
HR was defined as the minimum of a rolling 2-minute mean of
HR during periods of rest, whereas peak HR was calculated as
the maximum of a rolling 2-minute mean of HR during heavy
exercise (ie, the modification from Wu et al [14], which used
maximal HR during an exercise test). Predicted HR was
calculated by subtracting patient age from 220. CCI was then
calculated for each participant as the ratio between their
respective subtraction of peak, baseline HR values, and
subtraction of predicted, baseline HR values.

Parameters of the Simulation
To simulate real-world conditions that may affect HR and
activity monitor data, 3 perturbations were individually added
to each participant’s raw data, including NNI, HR, and PMSC
time-series data. HR data were extracted from raw NNI
time-series data in the initial analysis steps. Postextraction, HR,
and NNI data were analyzed separately adding the perturbations.
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First, gaps of varying length and frequency were added to the
HR monitor and activity monitor data (Figure 1A). This
perturbation was achieved by randomly selecting segments of
HR, NNI, and PMSC values for periods of 1 to 5 minutes in
length and removing them. The proportion of the entire data set
that was removed was varied from 5% to 95% in increments of
1.2% (75 steps). In this analysis, HR and NNI values in the
removed proportion of the data set were set to 35 beats per
minute and 500 milliseconds, respectively. Secondly, flicker
(ie, pink) noise in the HR monitor and activity monitor data was
simulated using the power law noise generator function in R (R
Foundation for Statistical Computing; Figure 1B). Next, the
amount of noise added to HR, NNI, and PMSC values was
varied between 0% and 150% (in 2% increments) of the mean
value for that feature. After the noise was added to the time

series, negative values for HR and NNI were transformed to
positive by taking their absolute and then both HR and NNI
values less than 1 were set equal to 1. For the third perturbation,
a positive systematic bias ranging between 0% and 150% (in
2% increments) was added to the HR, NNI, and PMSC data
(Figure 1C). PMSC values less than 0 were set equal to 0 after
the addition of any perturbation. Finally, all 3 types of
perturbations were combined in a final simulation, with each
perturbation being applied at an equivalent level varying
between 0% and 150% in increments of 2% for noise and bias,
and between 5% and 95% in increments of 1.2% for missingness
(ie, 75 steps for each of the 3 perturbations; Figure 1D). A total
of 75 perturbed data sets were created for each participant and
analyzed in this study.

Figure 1. Visual depiction of 4 simulated perturbations for a typical participant, where the black line represents the unperturbed data and the transparent
red lines represent the following perturbations: (A) 20% of data missing, (B) noise with magnitude equal to 20% of mean, (C) a positive bias of 20%,
and (D) all 3 perturbations combined.

Prediction Models
Features were extracted for the unperturbed raw data and each
of the data sets with a simulated perturbation. A total of 285
features (282 continuous and 3 categorical) were extracted from
the HR, NNI, and PMSC time-series data for each participant.
After variable preselection, 18 out of 285 features were reserved
to predict the CCI. The remaining 267 features were eliminated
from the analysis based on (1) low correlation with the CCI
variable and (2) features that remained consistent across all data
sets (perturbed and unperturbed) and as such were deemed
uninformative. Pearson correlation coefficient was computed

to quantify the association between the CCI and each feature
and considered only features with P≤.10 for the analysis to filter
out features weakly correlated with the CCI outcome. Next, the
rfcv [B1] function from the randomForest library in R was used
to create a random forest model predicting CCI in each data set,
and to output 3-fold cross-validated prediction performances
in the form of the root mean squared error (RMSE) between the
actual and predicted CCI values. The default parameters were
left unchanged for each of the developed random forest models,
allowing for direct comparability. Given the small amount of
data and the resultant variability in the results of a single 3-fold
cross-validation, the assessment of prediction performance was
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repeated 25 times for each data set. The mean and standard error
of the RMSE achieved by each model were then outputted and
compared between each of the simulated conditions. Baseline
RMSE (RMSE for a random classifier) was calculated by
considering the mean of the actual CCI values as predicted and
obtaining the standard deviation of the prediction errors. All
analyses were performed using R (v4.1.1).

Ethics Approval
Research ethics approval was not needed for this study as it is
a secondary use of publicly available data. The original data for
this study were collected with participant consent after approval
from the Ethical Committee of the University of Pisa
(#0077455/2018) [11,12].

Results

Prediction performance was assessed for a total of 76 conditions
(1 unperturbed and 75 perturbed simulations). The prediction
model for CCI, created using the unperturbed data set, achieved

a mean RMSE of 0.079 (SD 0.001) versus a baseline RMSE of
0.085 (SD 0.001). RMSE for prediction model for CCI, when
using the maximum and minimum HR terms included in the
calculation of CCI, was 0.069 (SD 0.006). Both the noise
perturbation and degree of missingness showed stability at the
low end of the perturbation spectrum with increasing RMSE
starting with medium-high degrees of perturbation. For the noise
perturbation (Figure 2), the RMSE remained stable up to a 20%
perturbation. Thereafter, RMSE increased up to an 80% noise
perturbation at which point the RMSE was no better than the
baseline model. A similar pattern was seen for missingness with
a stable RMSE up to a 20% data missingness, degrading
performance up to a 50% missingness and loss of predictive
ability thereafter. Introducing bias in the time series had no
effect on the RMSE at any level. The progression of RMSE for
the combined perturbations showed a similar pattern as noise
and missingness, with stability up to a 20% perturbation,
followed by performance degradation and a loss of predictive
ability at a ~35% perturbation.

Figure 2. Progression of root mean squared error (RMSE) for prediction of cardiac competence index (CCI) using 3-fold cross-validated predictive
performance over multiple iterations with increasing level of perturbations in source data (top left: noise; top right: missingness; bottom left: bias; and
bottom right: combined). CCL: cardiac competence limit.

Discussion

Principal Findings
In this study, we used continuous step count and HR data
acquired using a standardized protocol and thoroughly validated
wearable devices [15,16] and simulated the effect of data
degradation on a predictive model. We showed that the
performance of the prediction models for CCI remained stable
up to a 20% feature degradation (for all types). Thereafter,

model performance decreased with increasing perturbation of
up to 40%-50% feature degradation, at which point the models
were no longer predictive. Should these findings be replicated
in other contexts, it follows that the moderate decrease in data
reliability associated with consumer-grade wearable devices
might not be a contraindication to the use of the data generated
from these devices being used in prediction models.
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Methodological Considerations
The results from this study show that prediction models created
using machine learning based on the features derived from
time-series data can be relatively resistant to the low-moderate
degree of degradation in the quality of the underlying data.
There are numerous aspects of our simulation that warrant
further discussion. First, we focused only on step count and HR
as those are 2 of the most common types of data acquired
through consumer-based wearables devices. Recently released
devices now continuously measure other physiological indices
such as pulse oximetry, breathing rate, or HR variability. Thus,
the same type of simulation study will be needed for each of
these measurements to establish the degree of reliability needed
to maintain the performance of prediction models derived from
these data. Second, we decided to run the simulations far beyond
the range of perturbations that have been previously reported
for these devices. We used this approach to both observe the
behavior of the prediction models over the expected range of
perturbations and the degree of perturbations needed for model’s
performance to degrade up to the point where it is no longer
predictive. Future studies assessing other physiological markers
might not need to investigate behavior over such a large range
given that the upper limit is clearly outside of the realistic range.
Finally, it is important to note that the effect of feature
degradation might not be the same with all machine learning
methods that can be used to create prediction models. The ability
of random forest models to effectively integrate continuous
variables with highly abnormal distributions might make such
models uniquely suited to resist the effects of degradation in
the underlying features in a way that other methods could not
replicate. Future studies will be needed to compare the effect
of data degradation on different prediction models.

The use of machine learning to handle continuous monitoring
data, particularly in contexts where data reliability and
acquisition could be an issue, is appealing. In a traditional,
probabilistic-based, predictive modeling approach, the accuracy
and reliability of the predictors is highly important. However,
with machine learning, the paradigm can be different. Machine
learning uses secondary, data-derived features for predictions,
and model performance is predicated on the stability and
characteristics of those features and less so on the reliability of
the underlying data. This is particularly true for time-series data,
where features are created from multiple data points, something
which tends to reduce their variability. Prediction models created
using machine learning also have 3 additional major advantages
in this context. First, many machine learning algorithms create
higher-order features (features created through the combination
of other features in a process akin to statistical interactions);
meaning that the features predicting the outcomes are even
further removed from the raw data, and thus, are less sensitive
to small perturbations. Second, the ability of machine learning
models to use higher-order features also allows for predictive
models to use features specific to different segments of the
population. Third, machine learning models are able to take
into consideration far more features in making a prediction than
their probabilistic counterparts. Thereby, data perturbations
need to affect more features and be more pronounced to derail

model performance, since the algorithm can still make
predictions based on the more stable features.

Comparison With Prior Work
There are 2 main challenges with the use of consumer-oriented
devices to acquire data to be used for clinical applications—the
accuracy of the data generated and the use of surrogate
measurements. Previous studies of activity trackers have
generally found limited accuracy in step count, the measurement
of which is prone to substantial noise, particularly in high
physical activity situations [5-8]. A systematic review on the
subject has found that consumer-grade devices meet acceptable
accuracy standards for step count half the time, overestimating
higher intensity activity while underestimating medium intensity
activity. Additionally, wrist-worn devices are more prone to
high levels of noise and a greater amount of data missingness,
given that the data acquisition is free-living and not standardized
[17]. On the other hand, the accuracy of HR measurements,
something much less sensitive to data perturbations, was found
to be reasonably accurate albeit with an overall negative bias
and lower accuracy when patients were not in sinus rhythm.
For this metric, accuracy was lowest during high-intensity
activity [18,19].

An additional common criticism of the use of commercially
available wrist-worn devices for the clinical monitoring of
patients is that the majority of devices do not directly measure
the physiological features of interest but instead use surrogate,
more easily measurable features to approximate or predict those
features. For example, many wrist-worn devices do not measure
HR directly. They use a method called photoplethysmography,
which looks at rapid changes in red and green light absorption
in the wrist to estimate HR [20]. Cardiac pulsations and the
associated forward blood flow reflect red light and absorb green
light, and consequently, there is less green light absorption in
between heart beats. The speed of variation between red and
green light absorption is used to estimate HR. The use of
surrogate markers can have the following 2 drawbacks: first,
the approximation or prediction can be associated with a higher
error rate than a direct measurement and thus have lower
reliability, and second, some important features might be missed.
For example, in the case of HR measurements by
photoplethysmography, since the device does not measure a
full electrocardiogram signal, not all possible cardiac intervals
can be assessed, which may result in missing clinically important
features [17,21-23]. Moreover, HR detection with
photoplethysmography is dependent on having a sufficient
volume of ejected blood with each cardiac cycle (ie, perfusion)
to generate a detectable flow in the extremity where the device
is worn. In some heart rhythms and in some heart conditions,
stroke volume may be inadequately low for detection in certain
cardiac cycles leading to the underestimation of HR [24,25].

The use of data acquired from wearable devices in prediction
models is still relatively new, so much so that a systematic
review found only 8 published models based on wearable data
between 1997 and mid-2019 [26]. In a recent systematic review
of wearable sensors used in Parkinson disease in a clinical area
with a long history of sensor-based monitoring, only 7 out of
74 studies reported the creation of prediction models from these
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data. The development of those models was dependent on the
use of increasingly complex machine learning algorithms that
required the combination of diverse sets of higher-order features
to achieve a high performance [10]. The same trend toward
increasing the use of machine learning has been observed in the
area of continuous glucose monitoring for patients with diabetes
[27,28]. None of those previous investigations addressed the
potential effect of data accuracy and data degradation on the
performance of prediction models.

Study Limitations
This study must be considered in light of some limitations. First,
given that the outcome (ie, CCI) and predictive features were
derived from the same HR and physical activity data, it is
possible that the prediction models may overperform compared
to prediction models for outcomes not derived from the
underlying data. Additionally, it is worth noting that the
calculation to obtain the CCI was modified based on the data
available in this study, and, as such, it is only an approximation
of true CCI. Second, the limited sample size from a single data

set and the single modeling approach used here preclude treating
this study as definitive. That being said, this study provides a
proof of concept aimed at raising an important question related
to the reliability of the data obtained from consumer-grade
monitoring devices. Future studies will need to focus on large
cohorts, on more remote outcomes, and on exploring different
modeling strategies that may be more or less resistant to the
degradation of source data.

Conclusions
In conclusion, in this proof-of-concept study, we showed that
the performance of predictive models for CCI generated from
continuous devices is relatively stable to degradation in the
quality of the underlying data. This finding, while needing
confirmation in larger studies, suggests that by itself, lower
accuracy of measurements may not be an absolute
contraindication for the use of data from consumer-oriented
monitoring devices in prediction models intended to inform
clinical management.
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HR: heart rate
MMASH: Multilevel Monitoring of Activity and Sleep in Healthy People
NNI: N-N interval
PMSC: per-minute step count
RMSE: root mean square error
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