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Abstract

Background: Despite accumulating research on artificial intelligence–based electrocardiography (ECG) algorithms for predicting
acute coronary syndrome (ACS), their application in stable angina is not well evaluated.

Objective: We evaluated the utility of an existing artificial intelligence–based quantitative electrocardiography (QCG) analyzer
in stable angina and developed a new ECG biomarker more suitable for stable angina.

Methods: This single-center study comprised consecutive patients with stable angina. The independent and incremental value
of QCG scores for coronary artery disease (CAD)–related conditions (ACS, myocardial injury, critical status, ST-elevation
myocardial infarction, and left ventricular dysfunction) for predicting obstructive CAD confirmed by invasive angiography was
examined. Additionally, ECG signals extracted by the QCG analyzer were used as input to develop a new QCG score.

Results: Among 723 patients with stable angina (median age 68 years; male: 470/723, 65%), 497 (69%) had obstructive CAD.
QCG scores for ACS and myocardial injury were independently associated with obstructive CAD (odds ratio [OR] 1.09, 95%
CI 1.03-1.17 and OR 1.08, 95% CI 1.02-1.16 per 10-point increase, respectively) but did not significantly improve prediction
performance compared to clinical features. However, our new QCG score demonstrated better prediction performance for
obstructive CAD (area under the receiver operating characteristic curve 0.802) than the original QCG scores, with incremental
predictive value in combination with clinical features (area under the receiver operating characteristic curve 0.827 vs 0.730;
P<.001).

Conclusions: QCG scores developed for acute conditions show limited performance in identifying obstructive CAD in stable
angina. However, improvement in the QCG analyzer, through training on comprehensive ECG signals in patients with stable
angina, is feasible.

(JMIR Cardio 2023;7:e44791) doi: 10.2196/44791
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Introduction

Coronary artery disease (CAD) is a major global health issue,
with increasing prevalence and incidence worldwide [1].
Although electrocardiography (ECG) has been used as a primary

noninvasive modality in patients with suspected CAD, its
diagnostic value is limited to acute coronary syndrome (ACS),
such as ST-elevation myocardial infarction (STEMI) [2]. In
patients presenting with stable angina, the initial ECG often
shows nonspecific or normal findings, resulting in a
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low-diagnostic accuracy [2,3]. Therefore, in most cases,
additional tests, such as exercise ECG, single-photon emission
computed tomography, and coronary computed tomography
angiography, are required regardless of the initial ECG findings.

In previous decades, several attempts have been made to develop
automated algorithms using artificial intelligence (AI) to analyze
ECG signals to identify CAD [4]. For clinical use, most of these
AI-ECG “digital biomarkers” were developed for the rapid
evaluation of patients presenting with acute chest pain,
especially for ACS screening [5-10]. However, for nonacute
conditions, there is a paucity of data regarding the use of such
AI algorithms. Accordingly, there is a large knowledge gap
regarding whether algorithms developed for acute ischemia can
be used in chronic stable conditions.

We hypothesized that the AI-ECG biomarkers originally
developed for acute ischemia might also provide valuable
information regarding the presence and severity of CAD in
patients presenting with stable angina. However, we also
considered the possibility that a dedicated score for stable angina
may be more suitable. Therefore, the objectives of this study
were 2-fold: (1) to evaluate the utility of ECG digital biomarkers
that were originally developed for acute conditions, such as
ACS, in the risk stratification of patients presenting with stable
angina; and (2) to evaluate the feasibility of developing a new
ECG biomarker for stable angina by reusing the deep features
of an existing AI system.

Methods

Study Population
We retrospectively screened consecutive patients who visited
the outpatient clinic with symptoms indicative of stable angina
and underwent invasive coronary angiography at the Seoul
National University Bundang Hospital (SNUBH) between 2018
and 2020. Symptomatic patients with suspected CAD and
available records on clinical risk factors and baseline
examinations (blood tests, chest X-ray, ECG, and
echocardiography) were included. Patients who were
asymptomatic, had a previous history of CAD or coronary
revascularization (including percutaneous coronary intervention
and bypass surgery), underwent emergent or urgent coronary
angiography with suspected ACS, or underwent an ergonovine
provocation test with suspected variant angina were excluded.
Finally, 723 patients were analyzed.

Ethics Approval
The study protocol was approved by the institutional review
board of SNUBH (B-2211-790-102) and conducted in
compliance with the principles of the Declaration of Helsinki.
The requirement for informed consent was waived by the review
board due to the retrospective study design.

Clinical Features and Invasive Coronary Angiography
Baseline characteristics were obtained through a dedicated
review of electronic health records. Patient symptoms were
classified as typical or atypical chest pain according to their
nature. Additionally, patients without documented chest pain
but with relevant symptoms indicative of ischemic heart disease

(eg, dyspnea, diaphoresis, or extreme fatigue) were categorized
as having angina-equivalent symptoms. The presence of clinical
risk factors, including hypertension, diabetes mellitus,
dyslipidemia, and stroke, were determined by clinical diagnoses
or medical therapy records.

All patients underwent invasive coronary angiography, and
obstructive CAD was defined as the presence of any stenosis
with ≥50% diameter stenosis in major epicardial coronary
arteries (left main [LM], left anterior descending artery, left
circumflex artery, or right coronary artery [RCA]), or major
branches of each artery. The number of vessels with obstructive
CAD was counted as 1, 2, or 3 (1 vessel with obstructive CAD
[VD], 2VD, or 3VD), and obstructive CAD at the LM was
considered equivalent to 2VD. Therefore, 3VD was defined as
the presence of obstructive CAD in all 3 epicardial coronary
arteries (left anterior descending artery, left circumflex artery,
and RCA) or in both the LM coronary artery and RCA.

AI-Based Quantitative Electrocardiography (QCG)
Analysis
The development process for the QCG analyzer (Figure 1),
which operates on a mobile platform as a smartphone app, has
been reported previously [5,6]. The QCG analyzer is composed
of an encoder and various task-specific artificial neural network
layers. The encoder is a deep learning algorithm pretrained on
various open ECG data sets (49,731 recordings total) using
self-supervised learning techniques and can be used with or
without fine-tuning for various tasks. It was first integrated into
a smartphone AI app developed to screen various emergency
conditions using 47,194 annotated ECG images of over 32,968
patients who were admitted to the SNUBH emergency
department between 2017 and 2019. The encoder part has a
signal extraction submodule applying a series of morphological
operation procedures on the input data and a ResNet-based
convolutional neural network submodule with 16 layers of
convolution layers with squeeze-excitation blocks and a nonlocal
network block. The encoder serves as a signal extractor and
both submodules can be jointly optimized further through fine
tuning for the specific tasks it is applied for. The task-specific
layers of the QCG analyzer were optimized with Adam
optimizer with focal loss function using a supervised training
scheme, and the output probability from the sigmoid function
was calibrated using the temperature scaling method. The QCG
analyzer outputs 10 digital biomarkers (QCG scores ranging
from 0 to 100) representing the risk of 10 medical conditions
that may require emergent management (ACS, STEMI,
myocardial injury, critical status, left ventricular [LV]
dysfunction, pulmonary edema, pulmonary hypertension, right
ventricular dysfunction, pericardial effusion, and hyperkalemia).

In this study, the QCG analyzer was used in the following 2
AI-ECG analyses (Figure 1). First, to evaluate whether the
original QCG analyzer trained on acute-phase patients admitted
to the emergency department could be used for the evaluation
of patients presenting with stable angina, we derived 5 QCG
scores related to CAD (ACS, STEMI, myocardial injury, critical
status, and LV dysfunction). We then examined the independent
association and predictive value of each QCG score for the
presence of (1) any obstructive CAD and (2) 3VD as study
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outcomes. Second, to develop a new QCG score for the detection
of any obstructive CAD that is more suitable for stable angina,

we extracted the encoded feature vectors from input ECG images
using the QCG analyzer, which were then used as input features.

Figure 1. Artificial intelligence (AI)–based quantitative electrocardiography (QCG) analysis. The diagram summarizes the study flow. The QCG
analyzer transforms image-based electrocardiography (ECG) data into vectorized signal features. To validate the original QCG analyzer in patients with
stable angina, we derived 5 QCG scores related to coronary artery disease (CAD) and evaluated their predictive value for the presence of obstructive
CAD. Additionally, we developed a new QCG score that is more suitable for identifying obstructive CAD in stable angina by using a tree-based AI
algorithm, XGboost, with the extracted vectors as input features. ACS: acute coronary syndrome; AUROC: area under the receiver operating characteristic
curve; CNN: convolutional neural network; LV: left ventricular; STEMI: ST-elevation myocardial infarction.

Statistical Analysis
All statistical analyses were performed using R software (version
4.2.1; R Core Team). Continuous variables were presented as
medians (IQR; categorical variables were presented as numbers
(percentages). A 2-sided P<.05 was considered statistically
significant.

Evaluation of Original QCG Scores for Predicting
Obstructive CAD in Patients With Stable Angina
QCG scores for 5 CAD-related conditions were plotted
according to the number of vessels affected to evaluate their
distribution according to the CAD burden in patients with stable
angina. Significant associations between QCG scores and study
outcomes were examined using logistic regression analysis,
with independence determined by multivariate adjustment for
clinical features. The discrimination performance of QCG scores
for the study outcomes was evaluated by the area under the
receiver operating characteristic curve (AUROC). To evaluate
the incremental predictive value of QCG score over clinical
features, we constructed the clinical model using multivariate
logistic regression analysis with baseline clinical variables (age,
sex, BMI, symptom type, hypertension, diabetes mellitus,
dyslipidemia, smoking, stroke, and family history of

cardiovascular disease). Compared with the baseline
performance of the clinical model, significant improvement in
AUROC was assessed by adding QCG scores with clinical
features in the prediction model.

Development of a New Risk Score for Obstructive CAD
in Stable Angina
To derive a new QCG score suitable for stable angina, the entire
data set was divided into a training set (80%) and a test set
(20%). For model development, we employed an existing AI
algorithm using a tree-based ensemble technique, XGboost,
which has shown satisfactory performance in disease
classification problems across various cardiovascular fields
[11]. The final prediction model was derived from the training
set with hyperparameter optimization. We applied a 5-fold
cross-validation technique for this hyperparameter tuning
process by randomly dividing the training set into 5 folds.
During the cross-validation, the model was fitted among the 4
folds and validated on the remaining fold, and this step was
repeated 5 times. Then the final model performance on outcome
prediction was verified in the test set, expressed as AUROC.
Additionally, the incremental predictive value of the new QCG
score was assessed among the test set. The baseline clinical
model was constructed with clinical features that were the same
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as those used for assessing the incremental value of the original
QCG score.

Results

Baseline Clinical Features
The clinical features of 723 patients (age: median 68 years, IQR

60-75 years; male: 470/723, 65%; BMI 25.1 kg/m2, IQR

23.3-27.1 kg/m2) are summarized in Table 1. Obstructive CAD
was found in 497 (69%) patients, 132 (18%) of whom had 3VD.
Patients with obstructive CAD tended to be male, presented
more frequently with typical chest pain, and had a higher
prevalence of clinical risk factors than those without obstructive
CAD. These trends were more pronounced in patients with 3VD
(Table 1).

Table 1. Baseline characteristics.

P value (vs no ob-
structive CAD)

3-vessel obstruc-
tive CAD (n=132)

P value (vs no
obstructive CAD)

Any obstructive
CAD (n=497)

No obstructive

CADa (n=226)

Total popula-
tion (N=723)

Variables

Demographics

.2869 (61-76).3968 (60-75)68 (59-74)68 (60- 75)Age (years), median (IQR)

<.00198 (74.2)<.001345 (69.4)125 (55.3)470 (65)Male, n (%)

.9025.3 (23.6-27.1).4625.1 (23.4-27.1)25.3 (23.2-27.5)25.1 (23.3-
27.1)

BMI (kg/m2), median (IQR)

Clinical features, n (%)

Symptoms

<.001111 (84.1)<.001361 (72.6)125 (55.3)486 (67.2)Typical chest pain

—12 (9.1)—b93 (18.7)70 (31)163 (22.5)Atypical chest pain

—9 (6.8)—43 (8.7)31 (13.7)74 (10.2)Angina equivalent

.00298 (74.2).03329 (66.2)130 (57.5)459 (63.5)Hypertension

.00155 (41.7).02166 (33.4)55 (24.3)221 (30.6)Diabetes mellitus

.2051 (38.6).39174 (35)71 (31.4)245 (33.9)Dyslipidemia

.259 (6.8).1333 (6.6)8 (3.5)41 (5.7)Stroke

.3110 (7.6).0249 (9.9)10 (4.4)59 (8.2)Family history of CAD

.7913 (9.8).6349 (9.9)19 (8.4)68 (9.4)Smoking

Invasive coronary angiography, n (%)

Obstructive CAD

—38 (28.8)—56 (11.3)—56 (7.7)Left main

—125 (94.7)—402 (80.9)—402 (55.6)Left anterior descending
artery

—119 (90.2)—218 (43.9)—218 (30.2)Left circumflex artery

—132 (100)—248 (49.9)—248 (34.3)Right coronary artery.

aCAD: coronary artery disease.
bNot applicable.

Distribution of the Original QCS Scores in Patients
Presenting With Stable Angina
The distributions of 5 QCG scores in the study population are
shown in Figure 2. Among these, the scores for ACS (median
19, IQR 9-49) and myocardial injury (median 19, IQR 9-48)
had the highest values (Figure 2A). When stratified by the

number of vessels with obstructive CAD, these 2 scores did not
significantly differ between patients with 1VD or 2VD and
those without obstructive CAD (Figure 2B). However, the 3VD
group demonstrated significantly higher ACS and myocardial
injury QCG scores compared to those in other groups (all
P<.01).
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Figure 2. Distribution of the quantitative electrocardiography (QCG) scores. (A) Among the 5 QCG scores, those for acute coronary syndrome (ACS)
and myocardial injury exhibited the highest values. (B) When the QCG scores were stratified by the number of vessels with obstructive coronary artery
disease (CAD), patients group with 3-vessel disease showed significantly higher scores for ACS and myocardial injury than those in the other groups.
LV: left ventricular; STEMI: ST-elevation myocardial infarction.

Predictive Value of the Original QCG Scores
On univariate analysis, only the QCG scores for ACS (odds
ratio [OR] 1.11, 95% CI 1.05-1.18 per 10-point increase;
P<.001) and myocardial injury (OR 1.10, 95% CI 1.04-1.17 per
10-point increase; P=.002) showed significant associations with
the presence of obstructive CAD (Table 2). However, all 5 QCG
scores demonstrated significant associations with 3VD. These
trends were maintained after multivariate adjustment for clinical
features (age, sex, BMI, type of chest pain, hypertension,
diabetes, dyslipidemia, smoking, stroke, and family history of
premature CAD). Only QCG scores for ACS and myocardial
injury showed independent associations with the presence of
obstructive CAD (OR 1.09, 95% CI 1.03-1.17 per 10-point
increase; P=.006; and OR 1.08, 95% CI 1.02-1.16 per 10-point
increase; P=.01; respectively) (Table 3); however, all 5 QCG
scores were independently associated with the presence of 3VD.

The QCG scores for ACS (OR 1.19, 95% CI 1.11-1.27 per
10-point increase; P<.001) and myocardial injury (OR 1.19,
95% CI 1.10-1.26 per 10-point increase; P<.001) demonstrated
stronger associations with 3VD than other QCG scores (Table
3).

Although both scores for ACS and myocardial injury showed
significant discriminative performance for obstructive CAD
(AUROC 0.589 and 0.576, respectively), their performance was
lower than that for clinical features (AUROC 0.672; P=.005
and P=.001, respectively) (Figure 3A). However, for the
prediction of 3VD, both scores demonstrated moderate
performance (AUROC 0.652 and 0.648, respectively),
comparable to that for clinical features (AUROC 0.686; P=.31
and P=.27, respectively), and provided significant incremental
predictive value in combination with clinical features (AUROC
0.724 and 0.723; P=.02 and P<.001, respectively) (Figure 3B).
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Table 2. Univariate analysis for obstructive coronary artery disease (CAD).

3-vessel obstructive CADAny obstructive CADVariables

P valueUnivariate OR (95% CI)P valueUnivariate ORa (95% CI)

Clinical features

.291.10 (0.92-1.31).201.10 (0.95-1.27)Age (per 10-year increase)

.021.70 (1.11-2.59)<.0011.83 (1.33-2.54)Male

.991.00 (0.94-1.06).150.97 (0.92-1.01)BMI (per 1 kg/m2 increase)

<.0013.04 (1.85-5.00)<.0012.14 (1.54-2.98)Typical chest pain

.0051.84 (1.20-2.81).031.45 (1.05-2.00)Hypertension

.0021.83 (1.24-2.70).021.56 (1.09-2.23)Diabetes mellitus

.201.29 (0.87-1.90).341.18 (0.84-1.65)Dyslipidemia

.531.28 (0.59-2.75).101.94 (0.88-4.27)Stroke

.790.91 (0.45-1.84).022.36 (1.17-4.75)Family history of CAD

.851.06 (0.56-2.01).541.19 (0.68-2.08)Smoking

QCGb scores (per 10-point increase)

<.0011.20 (1.12-1.27)<.0011.11 (1.05-1.18)Acute coronary syndrome

<.0011.19 (1.12-1.27).0021.10 (1.04-1.17)Myocardial injury

.021.21 (1.04-1.41).400.94 (0.82-1.08)Critical status

.0021.13 (1.05-1.21).301.04 (0.97-1.12)STEMIc

.021.14 (1.02-1.27).710.98 (0.88-1.09)Left ventricle dysfunction

aOR: odds ratio.
bQCG: quantitative electrocardiography.
cSTEMI: ST-elevation myocardial infarction.

Table 3. Multivariate analysis of the quantitative electrocardiography (QCG) scores for obstructive coronary artery disease (CAD).

3-vessel obstructive CADAny obstructive CADVariables

P valueMultivariate OR (95% CI)P valueMultivariate OR (95% CI)a

QCG scores (per 10-point increase)

<.0011.19 (1.11-1.27).0061.09 (1.03-1.17)Acute coronary syndrome

<.0011.19 (1.10-1.26).011.08 (1.02-1.16)Myocardial injury

.041.19 (1.01-1.40).240.92 (0.79-1.06)Critical status

.0041.13 (1.04-1.22).521.03 (0.95-1.11)STEMIb

.041.13 (1.01-1.27).370.95 (0.85-1.06)Left ventricle dysfunction

aMultivariate odds ratios (ORs) are estimated with adjustment for age, sex, body mass index, typical symptoms, hypertension, diabetes mellitus,
dyslipidemia, stroke, family history of CAD, and smoking.
bSTEMI: ST-elevation myocardial infarction.
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Figure 3. Incremental predictive value of the original quantitative electrocardiography (QCG) scores for obstructive coronary artery disease (CAD).
(A) The QCG scores for acute coronary syndrome (ACS) and myocardial injury demonstrated significant predictive performance for obstructive CAD,
despite lower performance than that of clinical features. (B) In contrast, both scores showed moderate predictive performance for 3-vessel disease,
comparable to that for clinical features, and provide incremental predictive value in combination with clinical features. AUROC: area under the receiver
operating characteristic curve.

A New QCG Score for Obstructive CAD in Stable
Angina
Based on the above results, a new QCG score for any obstructive
CAD more suitable for patients presenting with stable angina
was deemed appropriate. The clinical characteristics of the
training and test sets are summarized in Table S1 in Multimedia
Appendix 1. Although the median age was slightly higher in
the training set than in the test set (median 69 years, IQR 60-75
years vs median 65 years, IQR 58-73 years), no significant
differences were observed in other clinical features between the
training and test sets. The distribution of our new QCG score
in the training and test sets is shown in Figure S1 in Multimedia
Appendix 2. The new QCG score was significantly higher in

patients with obstructive CAD than in those without obstructive
CAD. Further, the new QCG score demonstrated improved
performance for identifying obstructive CAD (AUROC 0.966
and 0.802 in the training and test sets, respectively) compared
to that for the original QCG scores of ACS and myocardial
injury (Figure 4). When patients were categorized by the optimal
cutoff value of the new QCG score (score of 66 in both training
and test sets), the sensitivity, specificity, and accuracy for
obstructive CAD were 90.5%, 91.7%, and 90.8% in the training
set and 75.8%, 75.6%, and 75.7% in the test set, respectively
(Figure 4). In addition, the new QCG score provided incremental
predictive value in combination with clinical features (AUROC
0.730 vs 0.827; P<.001) (Figure 5).
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Figure 4. Prediction performance of the new quantitative electrocardiography (QCG) score for any obstructive coronary artery disease (CAD). This
figure summarizes the discrimination performance of the new QCG score in the training and test sets. After categorizing the patients by the optimal
cutoff values of the new QCG score (score of 66 in both training and test sets), the accuracy for obstructive CAD was 90.8% and 75.7% in the training
and test sets, respectively. AUROC: area under the receiver operating characteristic curve; NPV: negative predictive value; PPV: positive predictive
power.

Figure 5. Incremental predictive value of the new quantitative electrocardiography (QCG) score for any obstructive coronary artery disease in the test
set. In the test set, the new QCG score showed significantly higher predictive performance for obstructive CAD than that for clinical features, and
provided incremental predictive value in combination with clinical features. AUROC: area under the receiver operating characteristic curve.

Discussion

Overview
In this study, we evaluated the utility of ECG digital biomarkers
developed for acute conditions, known as QCG scores, in the
risk stratification of patients with stable angina. Although the

discriminative power for the detection of any obstructive CAD
was inferior to that for clinical features, CAD-related QCG
scores showed independent and incremental predictive value
for the presence of 3VD. In addition, to improve the risk
stratification of patients with stable angina, we developed a new
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ECG biomarker for the detection of obstructive CAD in stable
angina by using the deep features of the QCG analyzer.

Challenges in Diagnosing Stable Angina With ECG
ECG has provided valuable insights into the physiological and
structural conditions of the heart and has long been used as a
primary diagnostic tool for various cardiovascular diseases. In
addition to its advantages of low cost, rapidity, and simplicity,
ECG acquisition is well standardized and reproducible.
However, the human interpretation of ECG images is highly
dependent on experience and expertise. Although
computer-generated interpretation techniques have been used,
they are based on predefined rules and do not capture all of the
complex information contained in ECG [12]. In patients with
stable angina, the diagnostic value of ECG is often limited
because of nonspecific or normal findings in the resting state
[3,13,14]. The diagnostic accuracy of ECG in detecting
obstructive CAD in the epicardial artery was reportedly low,
ranging from 59% to 62% [3]. Nevertheless, it is still possible
that there are ECG features relevant to stable angina, but they
are so subtle that visual interpretation would inevitably be
limited. There is growing evidence that AI techniques using
deep-learning convolutional neural networks enable the
detection of subtle signals and patterns from ECG that are
unrecognizable by the human eye or conventional
computer-based analysis [12]. Although they do not fit
traditional knowledge, these approaches may allow the
prediction of diseases that were previously unpredictable with
ECG, such as stable angina. Their usage extends beyond the
traditional roles of ECG, such as the identification of the current
rhythm, to include novel areas, such as the prediction of
subsequent atrial fibrillation events or poor LV ejection fraction
[15].

Potential of AI-ECG Models for Identifying
Obstructive CAD in Stable Angina
In terms of CAD, previous studies have demonstrated the
feasibility and fine performance of AI-ECG models as a rapid
screening tool for ACS in patients presenting with acute chest
pain [6-8]. Although various model structures with different AI
algorithms have been used, these models have focused on the
prediction of ACS. Although it is also conceivable that a
well-trained AI-ECG model might be able to detect stable
obstructive CAD, there is a paucity of investigations
extrapolating the clinical utility of these AI models for
identifying obstructive CAD in patients with stable angina. In
this study, we hypothesized that predeveloped QCG scores
trained on acute-phase patients could also be applied to patients
with stable angina. Among 5 QCG scores related to CAD, ACS
and myocardial injury QCG scores showed independent
associations with the presence of any obstructive CAD.
However, their prediction performance was low, and they did
not significantly improve the prediction performance over that
with clinical features. This is not surprising given that the
original QCS scores were derived by a deep-learning process
capturing ECG signals of patients in an acute setting.
Nevertheless, both scores exhibited moderate performance in
predicting obstructive 3VD and showed incremental predictive
value in combination with clinical features. Our results suggest

that these predeveloped QCG scores also have some potential
in capturing ECG changes in patients presenting with stable
angina, especially in those with extensive CAD, indicating a
higher burden of ischemia, such as 3VD.

Feasibility of the QCG Analyzer in Stable Angina
Because ECG findings in patients with stable angina are more
subtle and nonspecific than those observed in ACS, an accurate
prediction of obstructive CAD would be best achieved by a
dedicated model for stable angina. Therefore, we proceeded to
develop a new QCG score for the presence of obstructive CAD
in patients with stable angina based on ECG wave signals
vectorized by the QCG analyzer, applying a boosting tree
algorithm. The new QCG score performed better than the
original QCG scores in predicting obstructive CAD. Notably,
the new QCG score showed better performance for the
identification of patients with obstructive CAD than the model
with conventional clinical risk factors, as well as additive value
over that with clinical features.

There have been several reports on AI-ECG models for patients
with suspicion of stable CAD. A recent study reported that
AI-ECG may predict underlying coronary artery calcification
[16]. Another study by Huang et al reported an AI-ECG model
for obstructive CAD (defined as >70% diameter stenosis) with
an overall accuracy of 90%, which is higher than that in this
study (75.7% in the test set) [17]. However, the accuracy in the
previous study was only 56% among those without an ECG
diagnosis of acute myocardial infarction or ischemia.
Additionally, the study population comprised patients with
obstructive CAD who underwent percutaneous coronary
intervention and control patients without documented or
suspected CAD. Therefore, the AI performance was likely
overestimated, as the study population comprised extremes
(ACS patients with STEMI, who would be easily diagnosed on
ECG, and asymptomatic control patients who did not require
invasive coronary angiography), and its usefulness may
inevitably be limited in clinical practice. In contrast, we enrolled
consecutive patients who visited our outpatient clinic with
symptoms indicative of stable angina and underwent invasive
angiography to confirm the presence of obstructive CAD.
Although our study population was limited to a single tertiary
center, it is highly representative of our daily clinical practice.
Furthermore, the additive value of an AI-ECG analysis of
clinical features to detect obstructive CAD could provide
valuable insights to clinicians regarding when to consider
invasive coronary angiography.

Another study presented a deep-learning model for obstructive
CAD (defined as >50% diameter stenosis) in patients with stable
angina, similar to that in this study [18]. However, their analysis
was based on billing reports and included patients with known
CAD (58.3%), including those who underwent coronary
revascularization (previous percutaneous intervention [27.4%];
previous coronary artery bypass graft [19%]). Although their
model showed higher accuracy for obstructive CAD (overall
accuracy of 89.9%) than that in this study, the results may have
been affected by high-risk patient profiles, leading to more
representative ischemic ECG findings. In this study, we
excluded patients with a history of CAD or coronary

JMIR Cardio 2023 | vol. 7 | e44791 | p. 9https://cardio.jmir.org/2023/1/e44791
(page number not for citation purposes)

Park et alJMIR CARDIO

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


revascularization, enabling us to demonstrate the feasibility of
the QCG analyzer in a population that requires better
stratification, and thus benefits from the AI-ECG analysis.

Several AI-ECG models have been developed for commercially
available platforms [12]. Although the underlying driving
mechanisms may differ between models, they are commonly
fed by ECG signals that are preprocessed as 1D or 2D matrix
arrays [18]. Therefore, there may be difficulties in applying
these AI-ECG models in daily clinical practice, as additional
software may be required for input signal transformation. In
comparison, the QCG analyzer allows 12-lead ECG image data
as input, extracting wave signals and vectorizing them through
the initial encoding step [5,6]. Previous reports have validated
the consistent performance of the QCG analyzer for printed
ECG images and ECG photographs obtained as screenshots
from a smartphone [5]. Currently, the QCG analyzer is available
as a smartphone app, which can be directly applied on the ECG
images obtained by either smartphone cameras or screenshots.
Given its user-friendly interface, the QCG analyzer has the
potential to be used in both well-equipped hospitals with digital
ECGs and more resource-limited settings with paper ECGs.
Furthermore, the QCG analyzer can incorporate ECG images
obtained from conventional ECG recorders, enabling more
effective training in a new disease category. Through further
training on a high volume of patients with stable angina, the
QCG analyzer can also be an effective screening tool in primary
clinics, which initially assess patients with chest pain.

Limitations
This study has several important limitations. Although we
enrolled consecutive patients who visited the outpatient clinic

with symptoms indicative of stable angina and underwent
invasive coronary angiography, the number of patients was
relatively small, limited to a single tertiary center. Because we
evaluated the QCG analyzer in symptomatic patients who
underwent invasive coronary angiography, our study population
may have presented a relatively higher incidence of obstructive
CAD compared to previous studies. Furthermore, the
performance of the new QCG score, which was derived in this
study, was only internally validated. Therefore, the
generalizability of our results is limited. Nevertheless, we
observed the possibility of detecting obstructive CAD through
ECG in patients with stable angina. Therefore, we are planning
for further external validation on a larger number of patients to
refine the new QCG score and validate it in patient groups with
diverse clinical features. We hope we can share the results in
the near future.

Conclusions
As a quantitative AI-ECG algorithm, the QCG analyzer shows
the feasibility of predicting obstructive CAD in patients with
stable angina. Although predeveloped QCG scores for
CAD-related conditions showed limited performance for the
detection of obstructive CAD in stable angina, they still
demonstrated independent and incremental predictive value for
the presence of 3VD. Furthermore, we developed a new QCG
score by using the ECG wave signals vectorized by the QCG
analyzer, which outperformed the conventional model with
clinical features. With further expanded training on stable
angina, the QCG analyzer could be a more accurate and
cost-effective AI tool for screening obstructive CAD in these
patients.
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AUROC: area under the receiver operating characteristic curve
CAD: coronary artery disease
ECG: electrocardiography
LM: left main
LV: left ventricular
OR: odds ratio
QCG: quantitative electrocardiography
RCA: right coronary artery
SNUBH: Seoul National University Bundang Hospital
STEMI: ST-elevation myocardial infarction
VD: vessel with obstructive CAD
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