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Abstract

Background: Critical congenital heart disease (cCHD)—requiring cardiac intervention in the first year of life for survival—occurs
globally in 2-3 of every 1000 live births. In the critical perioperative period, intensive multimodal monitoring at a pediatric
intensive care unit (PICU) is warranted, as their organs—especially the brain—may be severely injured due to hemodynamic and
respiratory events. These 24/7 clinical data streams yield large quantities of high-frequency data, which are challenging in terms
of interpretation due to the varying and dynamic physiology innate to cCHD. Through advanced data science algorithms, these
dynamic data can be condensed into comprehensible information, reducing the cognitive load on the medical team and providing
data-driven monitoring support through automated detection of clinical deterioration, which may facilitate timely intervention.

Objective: This study aimed to develop a clinical deterioration detection algorithm for PICU patients with cCHD.

Methods: Retrospectively, synchronous per-second data of cerebral regional oxygen saturation (rSO2) and 4 vital parameters
(respiratory rate, heart rate, oxygen saturation, and invasive mean blood pressure) in neonates with cCHD admitted to the University
Medical Center Utrecht, the Netherlands, between 2002 and 2018 were extracted. Patients were stratified based on mean oxygen
saturation during admission to account for physiological differences between acyanotic and cyanotic cCHD. Each subset was
used to train our algorithm in classifying data as either stable, unstable, or sensor dysfunction. The algorithm was designed to
detect combinations of parameters abnormal to the stratified subpopulation and significant deviations from the patient’s unique
baseline, which were further analyzed to distinguish clinical improvement from deterioration. Novel data were used for testing,
visualized in detail, and internally validated by pediatric intensivists.

Results: A retrospective query yielded 4600 hours and 209 hours of per-second data in 78 and 10 neonates for, respectively,
training and testing purposes. During testing, stable episodes occurred 153 times, of which 134 (88%) were correctly detected.
Unstable episodes were correctly noted in 46 of 57 (81%) observed episodes. Twelve expert-confirmed unstable episodes were
missed in testing. Time-percentual accuracy was 93% and 77% for, respectively, stable and unstable episodes. A total of 138
sensorial dysfunctions were detected, of which 130 (94%) were correct.

Conclusions: In this proof-of-concept study, a clinical deterioration detection algorithm was developed and retrospectively
evaluated to classify clinical stability and instability, achieving reasonable performance considering the heterogeneous population
of neonates with cCHD. Combined analysis of baseline (ie, patient-specific) deviations and simultaneous parameter-shifting (ie,
population-specific) proofs would be promising with respect to enhancing applicability to heterogeneous critically ill pediatric
populations. After prospective validation, the current—and comparable—models may, in the future, be used in the automated
detection of clinical deterioration and eventually provide data-driven monitoring support to the medical team, allowing for timely
intervention.
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Introduction

Critical congenital heart disease (cCHD)—requiring a cardiac
intervention (cardiac surgery or therapeutic cardiac
catheterization) in the first year of life for survival—globally
occurs in 2-3 of every 1000 live births [1-3]. In the critical
perioperative period, intensive multimodal monitoring at a
pediatric intensive care unit (PICU) is warranted as their organs,
especially the brain, may be severely injured due to changes in
blood flow and oxygenation caused by hemodynamic and
respiratory events [4-7]. As such, clinical data streams that
include regional cerebral oxygen saturation (rSO2) using
near-infrared spectroscopy, as well as vital parameters (eg, heart
rate and blood pressure), are continuously acquired in these
critical patients and produce substantial amounts of
high-frequency data for medical assessment purposes.

However, integrated assessment of these clinical data
streams—condensing data to comprehensible information—can
be especially challenging in the cCHD population due to their
unique and dynamic physiology. For example, an oxygen
saturation (SpO2) varying from 60% to 90% can be normal in
some forms of cyanotic cCHD, such as hypoplastic left heart
syndrome [8], where it can be deadly in different forms of
cCHD. Adding up to the challenge, the overall intensive care
unit and PICU architecture is increasingly shifting toward
single-person rooms, promoting privacy and family-centered
care. However, this also results in decreased immediate visibility
of the patient and subsequently raises the threshold to combine
monitoring data with hands-on bedside input (ie, visual, tactile,
and response to stimuli).

With the rapid growth in both computing power and data storage
over the last decade, the potential benefits of advanced data
science algorithms, such as machine learning (ML), have greatly
increased for health care [7,9-11]. Clinicians may benefit from
the ML-assisted continuous interpretation of these large
quantities of monitoring data at the PICU, as it can provide them
with data-driven remote monitoring support through automated
detection of clinical deterioration. At times of suspected
deterioration, staff may be notified in a timely manner, allowing
for medical evaluation and possible treatment in an effort to
reduce the risk of injury.

Most of the previously published models aimed at providing
data-driven monitoring support do so through a prognostic early
warning score for a certain population and consider both static
(eg, diagnosis or age) and dynamic (eg, vital signs) parameters.
These were recently reviewed by Muralitharan et al [10] and
included postoperative patients or those in step-down wards
[12,13], emergency departments [14,15], and adult intensive
care [16,17].

To date, ML-based early warning algorithms in the pediatric
population are overall scarce (eg, Park et al [18]) and very

sporadic in the congenital heart disease (CHD) population in
the PICU (eg, Ruiz et al [19]), whereas none have been reported
as being currently in use. In the specific case of cCHD, the
heterogeneity of the population, both with respect to the normal
values in different age groups [20] and the spectrum of
underlying diseases, together with the limited amount of
critically ill pediatric patients, provide substantial challenges
for the application of advanced data science [21].

This study aimed to develop a diagnostic model using
transparent ML, which is capable of continuously detecting
clinical deterioration in patients with cCHD admitted to the
PICU while considering their unique hemodynamic physiology.
The model’s internal architecture is demonstrated, its
performance evaluated in comparison to expert opinion, and
the future implementation discussed, along with
recommendations provided for similar research.

Methods

Patient Population and Parameters
Infants younger than 1 year with cCHD admitted perioperatively
to the PICU of the University Medical Centre Utrecht between
2002 and 2018 were included based on the availability of
time-synchronous data streams. We collected data from 5 vital
parameters in a frequency of 1 measurement per second, namely
SpO2, regional cerebral saturation (rSO2) in both hemispheres,
invasive mean arterial blood pressure (IBP), respiratory rate
(RR), and heart rate (HR), as well as current mechanical
ventilation status. Patients were excluded if less than 12 hours
of complete data were available or due to low birth weight
(<2000 g). 

Ethical, Distributional, and Guideline Statements
As fully anonymized data were used, the medical ethical review
committee of the Wilhelmina’s Children Hospital waived
informed consent (application number 22/822). In manuscript
preparation, the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) checklist [22] was used (Multimedia Appendix 1).

Data Preprocessing
RR was measured through thoracic movement as a result of
electrocardiographic impedance derivation with the
electrocardiographic leads from the Philips Intellivue MP70
monitor. Because infants, especially neonates, can have
considerable fluctuations of RR within minutes, a trend
movement was examined rather than absolute values: a
300-second moving average for RR was implemented preceding
each time point t. Cerebral rSO2 was measured with
near-infrared spectroscopy with the Medtronic INVOS 5100
monitor using 2 pediatric cerebral sensors. If both probes
recorded a value, their mean was used in model calculations.
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At our institution, end-tidal carbon dioxide (EtCO2) is
considered in all mechanically ventilated patients to monitor
the efficacy of ventilation; therefore, EtCO2 was extracted to
determine the current mechanical ventilation status at each time
point (ie, currently mechanically ventilated if EtCO2>0 at time
t). No imputation was performed to account for missing values
in these parameters. To account for the underlying varying
physiology of CHD, patients were stratified into 2 subsets based
on average SpO2 during admission (ie, <90% versus ≥90%), as
measured with oximetry using the Philips Intellivue MP70
monitor (FAST technology with the Nelcor sensor). As SpO2

is a parameter in the model and therefore directly influences
predictive performance, we decided to use data-driven
stratification of CHD in order to accurately represent the
spectrum of underlying diseases throughout the stratified group
regardless of clinical diagnosis.

Model Architecture
To facilitate future clinical use, our model was developed using
explainable methods (ie, through methods allowing clinicians
to understand what features and assets contribute to the output)
as opposed to the so-called “black box” models (eg, deep neural
networks), where their methodological foundation and feature
derivation remains beyond grasp to most clinicians. The model’s

internal architecture consisted of 3 separate models, which were
integrated to coordinate a classification response of either sensor
dysfunction or stable or unstable patient status (Figure 1). Each
of the 3 models relied on a specific analysis: sensorial
dysfunction (submodel 1 in Figure 1), classification of normal
and abnormal vital parameter combinations (submodel 2 in
Figure 1), and detection and analysis of significant
patient-specific baseline deviations (submodel 3 in Figure 1).

An analyzed time point t was deemed unstable if no sensorial
dysfunction was detected, and either submodel 2 or 3—or
both—classified the time point t to be unstable. The continuous
data points were converted to episodes through a 5-minute
moving time frame, where an episode was considered unstable
when classified thus in at least 4 minutes (ie, ≥80%) out of any
5-minute time frame. If less than 4 (nonconsecutive) minutes
of the episode (ie, <80%) were deemed unstable, the time frame
was consequently classified as stable. To allow for baseline
build-up (submodel 3), the first hour of admission was analyzed
without triggering a classification response.

All models were built using RStudio (version 1.4; R Foundation
for Statistical Computing). The packages used in construction,
as well as the source code, can be found on the website of our
research group [23]. 

Figure 1. Flowchart depicting the model’s analytic process of detecting deterioration through submodel 1 (sensor dysfunction), submodel 2 (machine
learning analysis of parameter combinations), and submodel 3 (analysis of baseline deviations). HR: heart rate; IBP: invasive mean blood pressure; RR:
respiratory rate; rSO2: regional cerebral oxygen saturation; SpO2: oxygen saturation.
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Submodel 1: Sensor Dysfunction
To reduce the faulty classification of patient status due to sensor
errors, dysfunctions of IBP, SpO2, rSO2, and RR were evaluated.
HR sensor dysfunction was not included as no reliable
distinction between, for example, cardiac arrest (HR=0 beats
per minute) and sensor error, could be made. IBP and SpO2

dysfunction was determined as a difference of >25 points on
their respective scales compared to the previously measured
value (at time point t–1). The lower and upper limits of the rSO2

scale (≤15% and ≥95%, respectively) were noted as
measurement error as these values are unlikely to be a valid
measurement and rather emerge due to escaping sensor-light
emission. An RR sensor malfunction was considered to be a
rate below 5 breaths per minute. Upon detection, measurements
in the minute preceding the first detection (at time point t–60
seconds) up to the minute proceeding (at time point t+60
seconds) the last detection (t) were considered unfit for adequate
classification and consequently classified as sensor dysfunction. 

Submodel 2: Machine Learning Analysis of Parameter
Combinations
Combinations of parameters were analyzed and classified to
either be stable or unstable. Each vector of the parameters (RR,
HR, IBP, rSO2, and SpO2) was normalized and reduced to a
single principal component using the Mahalanobis method [24],
with respect to the stratified subset–specific (SpO2<90% versus
SpO2≥90%) mean, variance, and correlation matrices
(Multimedia Appendix 2). Vectors with a corresponding
Mahalanobis distance greater than the 80th percentile were
deemed unstable and discarded from the subset. The remaining
vectors were divided into a random 80:20 train:test partition
and used to train a one-class support vector machine (SVM).
We used a square-exponential radial basis function kernel with
a 5% soft margin (µ) to prevent overfitting. As the SVM was
trained using, presumably, stable vectors of parameters, any
nonresemblant vector was classified as unstable by the
SVM. Additionally, singular parameters were considered
unstable when exceeding static cutoff values determined by the
consensus of pediatric intensivists (Figure 2).

Figure 2. Flowchart depicting the layout of submodel 2, where stability and instability is detected through both support vector machine learning of
population-specific parameter instability as well as through predefined static cutoff values of HR, RR, and IBP. HR: heart rate; IBP: invasive mean
arterial blood pressure; RR: respiratory rate.

Submodel 3: Baseline Variation
Baseline variation analysis focused on the detection of abnormal
parameter deviations in comparison to the patient’s unique
baseline (Figure 3). A vector of parameters (HR, RR, IBP, rSO2,
and SpO2) was reduced to a single principal component using
the earlier introduced Mahalanobis distance [24] and increased
by 20% at times of mechanical ventilation (ie, EtCO2>0) due
to the consequent iatrogenically diminished variation in
parameters. The current Mahalanobis trend (Z), through a
300-second moving median preceding time point t, was

subsequently compared to the patient’s unique baseline (B,
median of all Mahalanobis distances preceding t). As
Mahalanobis distance is calculated using normalized values,
trend movement toward subset mean values (Z–B<0) was
assumed to be related to clinical improvement, where a
significant trend drifting ≥2 SDs from both the subset mean
values, as well as the baseline, was deemed to result from
instability (Z–B≥+2SD). SD was calculated after the removal
of the upper 20th percentile of the baseline corrected
Mahalanobis distance (ie, the SD in supposedly stable time
points) with respect to chronologicity.
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Figure 3. Flowchart depicting the layout of submodel 3 in the process of determining stability through baseline deviation analysis.

Model Performance
Novel, unseen data from the 5 parameters (HR, RR, IBP, SpO2,
and rSO2), along with the model’s classification, were visualized
in detail (Multimedia Appendix 3). Two experienced pediatric
intensivists (JN and EK) reviewed these charts, each noting
independently, being blinded from each other, whether they
agreed with the model classification. Any difference in opinion
was resolved by an independent third expert. The performance
of the algorithm was consequently based on expert opinion,
noting both time-percentual correctness as well as episodic
performance. Episodes were counted with a maximum duration
of 2 consecutive hours to prevent shifting results based on
episode length. 

Results

Patient and Parameter Characteristics
In total, 92 patients were initially identified with
time-synchronized parameters in their data sets, of whom 14
(15%) were excluded (<12-hour data: n=11, 79%;
birthweight<2000 g: n=3, 21%). The remaining 78 patients were
stratified into 2 subgroups based on mean SpO2 during
admission: SpO2<90% (n=26, 33%) and SpO2≥90% (n=52,
67%). The group characteristics are shown in Table 1. A list of
cardiac diagnoses and performed surgical interventions on
included patients is provided in Multimedia Appendix 4.

Table 1. Baseline characteristics of stratified subsets with an average oxygen saturation (SpO2) of <90% versus those with an SpO2 of ≥90%.

SpO2≥90% (n=52)SpO2<90% (n=26)Characteristics

Study population

35 (67)21 (81)Male gender, n (%)

3.3 (3.0-3.6)3.4 (3.1-4.0)Birth weight (kg), median (IQR)

9.0 (5.0-17.3)7.0 (2.3-11)Age at t=0 (days), median (IQR)

44.0 (23.8-61.6)63.1 (46.4-98.9)Available data (hours), median (IQR)

Vital parameters, median (IQR)

146 (132-158)159 (147-170)Heart rate (beats per minute)

35 (30-40)34 (30-38)Respiratory rate in (breaths per minute)

97 (95-100)77 (70-81)SpO2 (%)

71.5 (63.5-80.0)55.0 (49.0-63.0)Regional cerebral oxygen saturation (%)

53 (47-60)51 (47-57)Mean Invasive blood pressure (mm Hg)

Model Performance
A total of 209 hours of data from 10 patients across the
SpO2<90% group (n=5, t=98 hours) and SpO2≥90% group (n=5,
t=111 hours) were classified by our algorithm for performance
analysis.

Patients With an Average SpO2 of <90%

In the subgroup with an average SpO2 of <90%, a total of 77
stable episodes occurred, where 66 (86%) were correctly
classified. These 77 episodes lasted 90 hours, where 87 (97%)
hours were correctly analyzed. Unstable episodes occurred 21
times for a total of 8 hours. In total, 17 (81%) of these episodes
were correctly classified, adding up to 4 (51%) hours. Further,
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2 (12%) of the unstable episodes were correctly detected; yet,
algorithmic labeling did not cover the full length of the episode.

Patients With an Average SpO2 of ≥90%

Across the subgroup with an average SpO2 of ≥90%, stable
episodes occurred 76 times, of which 68 (89%) were correctly
classified. Stable episodes lasted a total of 91 hours, where 84
(92%) hours were correctly classified. Across 36 unstable
episodes adding up to 20 hours, 18 (86%) hours in 29 (81%)

episodes were classified accordingly. Out of the 29 correctly
detected unstable episodes, 8 (28%) were partially correct.

Overall Performance
Considering both groups, 134 of the 153 (88%) stable episodes
were correctly labeled (171 of 181 hours, 93%). Unstable
episodes were correctly labeled in 46 of the 57 (81%) observed
episodes (22 of 29 hours, 77%). A total of 12 unstable episodes
were missed by the model in testing. Sensor dysfunction
occurred a total of 138 times, of which 130 (94%) were
accurately labeled (Table 2).

Table 2. Performance analysis overview of the aberration detection algorithm when compared to expert consensus, depicted in either episodic or time
occurrence.

Total (n=10)SpO2≥90% (n=5)SpO2
a<90% (n=5)Model performance

Stable moment

1537677Episodic occurrence, n

134 (88)68 (89)66 (86)Episodic correctness (%), n (%)

1819090Time occurrence (hours), n

171 (93)84 (93)83 (92)Time correctness (hours), n (%)

Unstable moment

573621Episodic occurrence, n

46 (81)29 (81)17 (81)Episodic correctness, n (%)

29208Time occurrence (hours), n

22 (77)17 (83)5 (63)Time correctness (hours), n (%)

Sensor dysfunction

1388157Episodic occurrence, n

130 (94)74 (91)56 (98)Episodic correctness, n (%)

aSpO2: oxygen saturation.

Discussion

Principal Findings
In this proof-of-concept study, we have developed and
retrospectively evaluated an advanced data science algorithm
for PICU patients with cCHD aimed at automated detection of
clinical deterioration during their critical perioperative period.
Through 2-fold analysis of vital parameters, both in relation to
each other and in comparison to the patient’s unique baseline
parameters, a tailored approach was demonstrated to monitor
complex and hemodynamically challenging patients. Overall,
our model accurately detected clinical stability and deterioration
in, respectively, 88% and 81% of expert-confirmed episodes.
Sensor dysfunction occurred 138 times, of which 94% were
rightfully detected.

Clinical Relevance
The population of patients with cCHD has been shown to be at
substantial risk of deterioration in their perioperative period, as
they are susceptible to a range of hemodynamic and respiratory
events, especially in the postoperative period [4-7]. These
disturbances in (cerebral) blood flow and oxygenation may
eventually result in damage to internal organs, such as the gut

and the brain [7,25]. Brain injury, for example, is observed in
up to 60% of postoperative patients with cCHD and is known
to cause severe neurodevelopmental impairment, significantly
impacting quality of life [26,27]. Adequate detection of patient
deterioration could facilitate timely intervention and may,
eventually, prevent the onset of novel (brain) injury. However,
adequate and timely detection of ongoing deterioration is
becoming increasingly difficult through the ever-growing
amount of complex and dynamically interpretable data inherent
to the cCHD population, posing a 24/7 monitoring challenge to
the medical team. Additionally, previous research has noted
subtle variations in vital parameters to precede adverse events
[7] as well as significant phenotype differences in cCHD related
to an adverse outcome [4]. Through mixed-effects regression
analysis, Nicoll et al [4] described independent associations
between elevated HR (P=.003) and elevated systolic BP (P=.02)
with novel brain injury in the first 72 hours after surgery. These
physiological differences were most significant directly
postoperatively and decreased with time, again highlighting the
importance of adequate and intensive perioperative monitoring
to identify patients at higher risk of deterioration. However,
paying attention to these different physiological phenotypes
and subtle parameter variations requires 24/7 vigilance from
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staff, greatly increasing their cognitive load. With algorithmic
condensation of clinical data streams toward comprehensible
information, the cognitive load on clinicians and nurses will
likely be decreased, providing support to both patients and the
medical team.

Comparison to Previous Work
Overall, research classifying current patient status in
CHD—rather than predicting a future adverse event—is very
scarce. To the best of our knowledge, diagnostic AI models
classifying current patient status in CHD and cCHD have yet
to be published. A fair comparison of predictive versus
diagnostic models in CHD is limited due to their different aims
and setup; however, their methodological comparison is possible
to some degree.

In 2013, Clifton et al [14] proposed an algorithm for adults in
the emergency department through the use of an integrated
monitoring system that combines high-frequency physiological
data to predict upcoming escalation of care. Here, they have
developed and tested several ML methods against an existing
evidence-based early warning score. The different approaches
to predicting escalation of care had mixed results, where the
SVM had a high detection rate (>85%, time frame–dependent),
yet, also, a high false positive rate (27%). If their algorithm
were applied to, for example, the population of patients with
cCHD, their inherent dynamic circulation would not be taken
into account, most likely decreasing the detection rate.

In this study, it is argued that the 2-fold analysis of stability (ie,
parameters in relation to each other and with different time
points) is of significant value to the monitoring or predicting
of outcomes in heterogeneous populations, such as pediatrics,
using high-frequency physiological data. As such, future studies
aiming to monitor, classify, or predict outcomes in the pediatric
population are encouraged to evaluate the need for adjustment
to their patients’dynamic physiology and consider their model’s
resilience to these dynamic conditions. However, it must also
be acknowledged that robust statistical methods for transparent
advanced data science models, such as those proposed in this
study, remain scarce to this date, especially in complex clinical
time-series data. 

Additionally, a multitude of “black box models” (eg, deep neural
networks) have shown spectacular results in various fields,
including the prediction of clinical deterioration [10,16,19]. In
2022, Ruiz et al [19] demonstrated their retrospective
data-driven extreme gradient boosted model aimed at predicting
clinical deterioration (defined as adverse events, such as
intubation, cardiopulmonary resuscitation or initiation of
extracorporeal membrane oxygenation) in cCHD over a time
frame up to 8 hours. Through the model’s assessment of 1028
variables (eg, medication, vital parameters, laboratory values,
etc), they have achieved accurate predictions and good
calibrations with at least 4 hours prior to intubation (area under
the receiver operating characteristic curve 0.927, 95% CI
0.825-0.994) or cardiopulmonary resuscitation and
extracorporeal membrane oxygenation (area under the receiver
operating characteristic curve 0.914, 95% CI 0.796-0.991).

However, the methodological foundations of such complex
models remain beyond the grasp of most clinicians. It is likely
that models with explainable methods are more likely to be
implemented in daily practice and, therefore, explainable
modeling techniques were used in this study. The clinical
usefulness of our proof of concept, however, has yet to be
proven as it is currently limited by its underpowered sample
size and the retrospective analysis of model performance. In
the near future, the model will be trained and evaluated on a
more heterogeneous population to increase performance and
versatility, boosting the chances of successful (external)
validation while maintaining a sharp clinical perspective: how
can the algorithm be most valuable to both patients (eg, early
intervention and reduced risk of injury) as well as the medical
team (eg, reduced cognitive load)? 

Strengths and Limitations
Several other limitations to this proof-of-concept study must
be addressed. First (and foremost), selection bias was introduced
through the inclusion of patients with cerebral rSO2

measurements, as well as IBP. Cerebral rSO2 monitoring is
currently not available as a standard of care in global (cardiac)
PICUs, and as such, the clinical value of our model will decrease
outside the research institution. Additionally, a relatively high
sample rate of 1 Hz was used to extract data. As not all
parameters are transmitted at the same frequency, internal
sampling or resampling is inevitable, possibly affecting data
quality.

Second, we have chosen a retrospective approach to analyze
model performance. Analyzing patient stability solely based on
retrospective parameters remains particularly challenging, even
for medical experts. Increases or decreases in parameter values
may, for example, originate for a number of reasons, such as
feeding or movement, and may have little to no clinical
significance. The classification of episode stability or sensor
dysfunction was evaluated by expert consensus based on the
same data available to the model. However, no hard judgments
can be made on the clinical relevance of that episode, as the
data were not labeled prospectively (ie, containing labeled
events). Arguably, prospective validation with members of the
medical team performing a simultaneous bedside evaluation on
agreement with the model will be one of the future goals.

Third, in the stability analysis of parameter combinations, an
SVM was trained to recognize stability across 5 dimensions. In
selecting presumably stable parameter combinations, an 80th
percentile split of the vector’s corresponding Mahalanobis
distance was made, partially based on earlier work by Clifton
et al [14]. However, since no explicit labeling was possible in
the data set, the chosen cutoff percentile remains arbitrary.
Additionally, through the use of normalized data, an assumption
is made that any deviation from subset-specific mean values
reflects an adverse development. However, for some parameters,
an increase or decrease does not necessarily reflect an adverse
event, which may result in an overestimation of clinical status
and aid in the induction of alarm fatigue. Future research may
point out different methods to be more effective.
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Future Directions
Several steps must be taken to progress this model—and others
alike—toward implementation in daily clinical practice [28,29].
Primarily, a data infrastructure is required to enable real-time
or near–real-time data availability to AI models, allowing their
prospective validation. In the near future, such a platform will
be constructed, speeding up the qualitative performance analysis
of data science models while promoting guideline adherence,
such as the TRIPOD guidelines [22]. Eventually, AI models
will be implemented into the daily workflow, aiding the medical
team and likely decreasing their cognitive load, which is
beneficial for, in this instance, the continuous interpretation of
clinical data streams in hemodynamically challenging patients.

Conclusions
In this study, a proof-of-concept algorithm aimed at detecting
clinical deterioration in patients with cCHD at the PICU was
developed and retrospectively evaluated, achieving reasonable
performance considering the heterogeneous population of
neonates with cCHD. Combined analysis of baseline (ie,
patient-specific) deviations and simultaneous parameter-shifting
(ie, population-specific) proofs to be promising with respect to
enhancing applicability to heterogeneous critically ill pediatric
populations.

Although performance should be improved and prospectively
validated, advanced data science models such as the one
presented here may, in the future, be used in automated detection
of clinical deterioration, providing real-time data-driven
monitoring support in the case of hemodynamically challenging
patients and allowing for timely intervention.
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