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Abstract

Background: An accurate quantitative analysis of coronary artery stenotic lesions is essential to make optimal clinical decisions.
Recent advances in computer vision and machine learning technology have enabled the automated analysis of coronary angiography.

Objective: The aim of this paper is to validate the performance of artificial intelligence–based quantitative coronary angiography
(AI-QCA) in comparison with that of intravascular ultrasound (IVUS).

Methods: This retrospective study included patients who underwent IVUS-guided coronary intervention at a single tertiary
center in Korea. Proximal and distal reference areas, minimal luminal area, percent plaque burden, and lesion length were measured
by AI-QCA and human experts using IVUS. First, fully automated QCA analysis was compared with IVUS analysis. Next, we
adjusted the proximal and distal margins of AI-QCA to avoid geographic mismatch. Scatter plots, Pearson correlation coefficients,
and Bland-Altman were used to analyze the data.

Results: A total of 54 significant lesions were analyzed in 47 patients. The proximal and distal reference areas, as well as the
minimal luminal area, showed moderate to strong correlation between the 2 modalities (correlation coefficients of 0.57, 0.80,
and 0.52, respectively; P<.001). The correlation was weaker for percent area stenosis and lesion length, although statistically
significant (correlation coefficients of 0.29 and 0.33, respectively). AI-QCA tended to measure reference vessel areas smaller
and lesion lengths shorter than IVUS did. Systemic proportional bias was not observed in Bland-Altman plots. The biggest cause
of bias originated from the geographic mismatch of AI-QCA with IVUS. Discrepancies in the proximal or distal lesion margins
were observed between the 2 modalities, which were more frequent at the distal margins. After the adjustment of proximal or
distal margins, there was a stronger correlation of proximal and distal reference areas between AI-QCA and IVUS (correlation
coefficients of 0.70 and 0.83, respectively).

Conclusions: AI-QCA showed a moderate to strong correlation compared with IVUS in analyzing coronary lesions with
significant stenosis. The main discrepancy was in the perception of the distal margins by AI-QCA, and the correction of margins
improved the correlation coefficients. We believe that this novel tool could provide confidence to treating physicians and help
in making optimal clinical decisions.
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Introduction

Coronary angiography is a key step in defining the coronary
anatomy and severity of coronary arterial stenosis [1]. Percent
diameter stenosis (%DS) based on a 2D image is usually used
as evidence of ischemia or guidance for further physiology study
[2]. Despite advances in intravascular imaging and physiology,
coronary intervention is mostly performed based on coronary
angiography alone [3].

Efforts have been made to analyze coronary angiography images
quantitatively and objectively [4]. Human eyeball assessments
are known to have a high interobserver variability [5].
Quantitative coronary angiography (QCA) has proven
reproducibility and accuracy and is thus considered the standard
[6]. Moreover, 3D QCA has been developed, which showed a
better correlation with coronary hemodynamics and intravascular
anatomy than the 2D QCA [7,8]. However, its clinical adoption
is low because it is time consuming and labor intensive.

Intravascular ultrasound (IVUS) offers detailed 3D tomographic
views of coronary plaques and reference vessels. Anatomical
information obtained by IVUS can help identify the clinical
relevance of the lesion and enable optimal stent implantation
[9]. Studies have suggested that the use of IVUS can reduce
adverse cardiovascular events such as mortality, myocardial
infarction, target lesion revascularization, and stent thrombosis,
especially in complex coronary interventions, including left
main intervention and long coronary stenting [10-12].
Limitations of intravascular imaging still exist, such as the
additional time and cost as well as the invasiveness of the
additional procedure.

Artificial intelligence (AI) has been shown to automatically
analyze medical images with accuracy and consistency as high
as human experts [13]. A novel software (MPXA-2000,
Medipixel) has been developed that uses a deep learning
algorithm to segment and analyze coronary angiography images.
An AI-assisted real-time QCA that automatically provides
quantitative information has the potential to support clinical
decisions and improve patient outcomes. In this study, we
validated the performance of AI-based QCA (AI-QCA)
compared with IVUS in patients with coronary artery disease.

Methods

Study Design and Patient Selection
This was a retrospective analysis of patients with coronary artery
disease who underwent coronary intervention at a single tertiary
center. Fifty patients who underwent IVUS-guided percutaneous
coronary intervention (PCI) in Uijeongbu Eulji University
Hospital between October 2021 and July 2022 were included.
Patients with total or subtotal occlusion and ST-segment
elevation myocardial infarction were excluded from the study.
Baseline characteristics, clinical diagnosis, and laboratory data
were collected via medical record review.

Ethical Considerations
The study protocol was approved by the Eulji University
Hospital Institutional Review Board (no. 2022-07-009). Written

informed consent was waived because of the retrospective study
design and minimal risk to the patients. Personal information
and study data were anonymous and deidentified. The data will
not be used for any purpose other than this research, and
compensation for participants is not applicable. The study
complied with the principles of the Declaration of Helsinki,
revised in 2013.

AI-QCA Analysis
AI-QCA analysis was performed using the MPXA-2000
software. The algorithm used in MPXA-2000 was developed
based on an ensemble architecture that integrated 3 neural
networks for semantic segmentation (U-Net++, U2-Net, and
DeepLabV3+; Figure 1) [14-16]. A hard voting classifier was
also employed to improve the overall performance. A
classification head for the target vessel of angiography is
included at the end of each encoder in the 3 networks. In the
training stage, the algorithm was trained to segment vessel mask,
classify the mean vessel and side branches into 1 of the 3 types,
and localize the region of interest. In an unpublished test, the
average dice similarity coefficient of this segmentation algorithm
was reported as 0.92, and the overall accuracy of vessel
classification was 0.99. The software was authorized by the
Korean Food and Drug Administration. Each image was
calibrated using automatic calibration based on the isocenter
calibration factor, which can be extracted from the header of
the Digital Imaging and Communications in Medicine file. The
best frame was automatically chosen from each video clip using
densitometry. Based on 2D images, vessel segmentation, region
of interest choice, vessel classification, and quantitative analysis
can be performed without human intervention.

Information such as proximal and distal reference vessel
diameters, minimum lumen diameter, %DS, and lesion length
(LL) was provided within several seconds. Users can switch
the analysis frame and modify the lesion and the segmented
mask contours. Reference areas and percent area stenosis (%AS)
were derived from the values estimated by AI-QCA using the
following formula:

The first set of analyses was performed using the values from
the fully automated AI-QCA. Data on proximal reference
diameter, distal reference diameter, minimum lumen diameter,
%DS, and LL were collected without any intervention from the
investigators. Second, the proximal and distal borders of
AI-QCA were adjusted to match those of IVUS to compare the
2 methodologies for the same coronary locations. As will be
described later, geographic mismatch was the biggest cause of
the discrepancy between AI-QCA and human analysis using
IVUS. Third, we compared proximal-and-distal-border–adjusted
AI-QCA and manual QCA.
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Figure 1. (A) Three main network architectures: U-NET++, U2-Net, and DeepLabV3+. (B) The ensemble method process. Conv: convolution; DCNN:
deep convolutional neural network.

IVUS Analysis
IVUS was performed using 60 MHz OPTICROSS HD catheter
(Boston Scientific) after intracoronary nitroglycerin
administration. The proximal and distal reference areas, minimal
luminal area (MLA), percent plaque burden, and LL were
measured by human experts with more than 5 years of
experience. IVUS analysis followed the consensus
recommendations [17].

Variables and Statistical Analysis
The study variables included proximal reference area, distal
reference area, MLA, %AS, and LL. Continuous variables were
expressed as mean and SD, and categorical variables as numbers
and percentages. The association between the 2 methods was
tested by plotting a scatter plot and measuring Pearson
correlation coefficient. A correlation coefficient between 0.10
and 0.39 was considered weak, that between 0.40 and 0.69
moderate, that between 0.70 and 0.89 strong, and that between
0.90 and 1.00 very strong [18]. Bland-Altman plots were
constructed to test the agreement between the 2 methods by
plotting the average of the AI-QCA and IVUS measurements
on the x-axis and the difference between the AI-QCA and IVUS
on the y-axis. All statistical analyses were performed using R
programming version 4.1.2 (The R Foundation for Statistical
Computing).

Results

Among the 50 patients initially included, AI-QCA did not work
properly in 3 patients due to overlapping coronary arteries.
Finally, we analyzed 54 lesions in 47 patients who underwent
PCI under IVUS guidance. The baseline patient characteristics
are shown in Table 1. The average age was 64.7 (SD 10.5) years.
Of the 47 patients, 33 (70.2%) were male, and 24 (51%) had
acute coronary syndrome. The left anterior descending, right
coronary, and left circumflex arteries comprised 59.3% (n=32),
27.8% (n=15), and 13.0% (n=7) of the lesions, respectively
(Table 2). Reflecting the complex study population of
IVUS-guided PCI, 61.1% (n=33) of the lesions were in the
bifurcation, and 35.2% (n=19) were heavily calcified lesions.

First, we compared the values from the fully automated AI-QCA
with IVUS. Figure 2 shows the scatter plots of the study
variables. Measurements for the reference and lesion areas
showed moderate to strong correlations between the 2 modalities
(correlation coefficients of 0.57 for proximal reference, 0.80
for distal reference, and 0.52 for MLA; P<.001). Meanwhile,
%AS and LL showed a weaker correlation (correlation
coefficient of 0.29 and P=.03 for %AS and correlation
coefficient of 0.33 and P=.02 for LL). The Bland-Altman plots
for agreement between the AI-QCA and IVUS measurements
are shown in Figure 3. The AI-QCA measured reference areas
smaller than human observers using IVUS with no systematic
proportional bias. Most observations were within an error margin

of 4 mm2. The AI-QCA tended to measure LL shorter than
human observers with IVUS.

%AS showed the weakest correlation among the variables. We
divided the patients into 2 groups, with high and low agreement
in %AS. The low agreement group, which is a group with a
difference of more than 10% of %AS measured by AI-QCA
and IVUS, had numerically lower heavy calcified lesions (Table
S1 in Multimedia Appendix 1). The difference of less than 10%
of %AS does not affect the decision to perform PCI.

The weak correlation for LL was driven by the geometric
mismatch of lesion identification between the human observers
and the AI-QCA (Figure 4). The proximal border identified by
AI-QCA was mostly within 10 mm of that identified by human
observers in 48 (88.7%) lesions. However, the distal border
showed a greater discrepancy—AI-QCA identified the distal
border more proximally than human observers guided by IVUS.
As a result, AI-QCA generally estimated a shorter LL compared
with IVUS.

Next, we adjusted the proximal and distal margins detected by
AI-QCA to align with those determined by human observers
under IVUS guidance. The proximal and distal reference areas
and MLA showed numerically greater correlation coefficients
than the initial analysis (0.70 for proximal reference area, 0.83
for distal reference area, and 0.59 for MLA; P<.001), while
%AS still showed weak correlation (0.21, P=.13; Figure 5).
Bland-Altman plots (Figure S1 in Multimedia Appendix 1)
show that the mean differences in reference areas and MLA
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between AI-QCA and IVUS were smaller than those between
fully automated AI-QCA and IVUS.

AI-QCA showed strong correlation with manual QCA except
proximal reference diameter (Figure S2 in Multimedia Appendix
1). Figure S3 in Multimedia Appendix 1 shows the correlation
coefficients measured by IVUS and manual QCA. Correlation
coefficients between AI-QCA and IVUS were similar to those
between manual QCA and IVUS (0.70 vs 0.76 for proximal
reference area, 0.83 vs 0.82 for distal reference area, 0.59 vs
0.59 for MLA, 0.21 vs 0.22 for %AS, and 1.00 vs 0.98 for LL).

Figure 6 shows a representative case in which AI-QCA showed
a good correlation with IVUS. LL was estimated to be 39.0 mm
with AI-QCA and 37.1 mm with IVUS. %DS by AI-QCA was
76.7%, and plaque burden on IVUS was 78%. Figure 7 shows
another representative case in which AI-QCA identified the
distal border more proximally than IVUS. AI-QCA separated
the distal right coronary artery lesion into 2 segments, which
was considered a single continuous lesion under IVUS guidance.

Table 1. Patient characteristics.

ValuesVariables

64.7 (10.5)Age (years), mean (SD)

Sex, n (%)

33 (70.2)Male

14 (29.8)Female

Smoking history, n (%)

24 (51.1)Nonsmoker

10 (21.3)Previous smoker

13 (27.7)current smoker

Clinical diagnosis, n (%)

12 (25.5)Myocardial infarction

12 (25.5)Unstable angina

16 (34.0)Stable angina

7 (14.9)Heart failure, others

Underlying disease, n (%)

29 (61.7)Hypertension

27 (57.4)Diabetes mellitus

15 (31.9)Dyslipidemia

6 (12.8)Chronic kidney disease

6 (12.8)Stroke (ischemic and hemorrhagic)

6 (12.8)Previous coronary artery disease

Laboratory findings, mean (SD)

13.5 (2.0)Hemoglobin (g/dL)

157.0 (65.4)Fasting glucose (mg/dL)

1.7 (2.5)Creatinine (mg/dL)

159.2 (50.2)Total cholesterol (mg/dL)

150.7 (83.7)Triglyceride (mg/dL)

37.9 (9.2)HDLa-cholesterol (mg/dL)

103.8 (53.5)LDLb-cholesterol, mg/dL

6.8 (1.9)Hemoglobin A1c (%)

aHDL: high-density lipoprotein.
bLDL: low-density lipoprotein.
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Table 2. Lesion characteristics.

Values, n (%)Characteristics

Location

32 (59.3)Left anterior descending artery

15 (27.8)Right coronary artery

7 (13.0)Left circumflex artery

33 (61.1)Bifurcation

19 (35.2)Heavy calcified lesion

8 (14.8)Ostial disease

9 (16.7)Long lesion

Disease extent

16 (29.6)One-vessel disease

20 (37.0)Two-vessel disease

18 (33.3)Three-vessel disease

Figure 2. Scatter plots and Pearson correlation coefficients for (A) proximal and (B) distal reference areas; (C) minimal lumen area, (D) % area stenosis,
and (E) lesion length measured by artificial intelligence–based quantitative coronary angiography (AI-QCA) and intravascular ultrasound (IVUS).

Figure 3. Bland-Altman plots showing the agreement between artificial intelligence–based quantitative coronary angiography (AI-QCA) and intravascular
ultrasound (IVUS) for (A) proximal and (B) distal reference areas; (C) minimal lumen area, (D) % area stenosis, and (E) lesion length. The x-axis is
the average of variables measured by AI-QCA and IVUS, and the y-axis is the difference of AI-QCA minus IVUS.
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Figure 4. Geographic mismatch in lesion identification between artificial intelligence–based quantitative coronary angiography (AI-QCA) and human
observers under intravascular ultrasound (IVUS) guidance. The reference point of y-axis is the proximal and distal margin determined by IVUS. A
positive value means the margin determined by AI-QCA is more distal than that by IVUS.

Figure 5. Scatter plots and Pearson correlation coefficients for (A) proximal and (B) distal reference areas; (C) minimal lumen area, (D) % area stenosis,
and (E) lesion length measured by artificial intelligence–based quantitative coronary angiography (AI-QCA) and intravascular ultrasound (IVUS) after
adjusting proximal and distal margins.

Figure 6. A representative case in which artificial intelligence–based quantitative coronary angiography (AI-QCA) showed a good correlation with
intravascular ultrasound (IVUS) observation. %DS: percent diameter stenosis; DRD: distal reference diameter; LAD: left anterior descending artery;
LCX: left circumflex artery; MLD: minimal luminal diameter; PRD: proximal reference diameter; RCA: right coronary artery; Ref.D: reference diameter.
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Figure 7. A representative case in which artificial intelligence–based quantitative coronary angiography (AI-QCA) measured lesion length shorter than
intravascular ultrasound (IVUS). AI-QCA identified mild atherosclerotic lesion at distal as normal. %DS: percent diameter stenosis; AI-QCA: artificial
intelligence–based quantitative coronary angiography; DRD: distal reference diameter; LAD: left anterior descending artery; LCX: left circumflex
artery; MLD: minimal luminal diameter; PRD: proximal reference diameter; RCA: right coronary artery; Ref.D: reference diameter.

Discussion

Principal Findings
In this study, we found that the AI-QCA showed a moderate to
strong correlation with human assessment guided by IVUS. The
reference vessel size and stenosis severity were moderately
correlated. Geographic mismatch was present in certain cases,
indicating that there was discrepancy in the proximal or distal
lesion margins between AI-QCA and IVUS. Discrepancies were
frequently observed at distal margins.

Strengths of This Study
The application of AI is expanding in various fields of medicine.
Machine learning and computer vision were introduced first
and have proven their roles in radiology and pathology [19,20].
The adoption of medical AI has been slow in cardiology, partly
due to the 3D nature and video format of cardiology images.
Several recent studies have tested the application of AI in
echocardiography, owing to recent advances in computing power
and machine learning algorithms [21,22]; however, research
has been scarce in the field of coronary angiography [23,24].

Interpretation of Results
The observation of this study, that AI-QCA underestimates
vessel size compared to IVUS, is in line with the findings from
previous studies. Studies have shown that QCA measurements
are usually smaller than intracoronary imaging including optical
coherence tomography and IVUS [25]. A postmortem study
also found that intracoronary imaging overestimates the lumen
area compared with the histomorphometry [26]. IVUS
measurements are generally larger than those obtained using
optical coherence tomography.

Since there are scarce data on AI-QCA, the relationship between
coronary artery calcification and AI-QCA measurements is not
well known. In this study, heavy calcification may have affected
the AI-QCA measuring %AS, although not statistically
significant. The finding that AI-QCA estimates an LL shorter
than IVUS does can be partly explained by the tomographic
images provided by IVUS. Observers can identify mild
atherosclerotic changes with IVUS that appear normal on the

angiography [27]. It is well known that physicians tend to use
longer and larger stents during IVUS-guided PCI [28].

This study showed a relatively good correlation with MLA, but
a weaker correlation with %AS. One possible reason for this is
that positive remodeling is reflected in IVUS. Positive
remodeling and vessel wall expansion occur during the early
phase of atherosclerosis to maintain lumen size despite plaque
accumulation. %DS is calculated only based on the reference
diameter assumed by the interpolation of proximal and distal
normal-looking segment diameters. In addition, reference
diameters can be underestimated because proximal and distal
reference segments may not be free of atherosclerosis, as
discussed above. The plaque burden assessed by IVUS is greater
than the %AS by QCA [29]. This study population represented
complex coronary diseases—61% with bifurcation and 35%
with heavily calcified lesions. A previous study also found
intercore lab variability in the analysis of %DS for bifurcation
lesions [30]. In this study, we calculated %AS from %DS from
2D images using the previously mentioned equation (Methods
section). It is anticipated that 3D QCA may improve the
accuracy of lesion severity.

Clinical Implication
Physicians performing PCI require considerable experience to
accurately assess the characteristics of coronary arteries and the
burden of atherosclerotic plaques. IVUS is the most commonly
used intravascular imaging tool for optimizing coronary stenting
[31,32]. This study showed a moderate to strong correlation
between an AI-QCA that automatically analyzed 2D
angiography images and IVUS analysis. Physicians could
consult AI-QCA during PCI and consider a one-step larger
diameter stent, as this study suggested AI-QCA tended to
underestimate reference vessel area. In addition, physicians
should be aware that AI-QCA may underestimate mildly
atherosclerotic lesion as normal.

The AI-QCA tested in this study was based on deep learning
algorithms intended to mimic the QCA process by human
experts. This tool may be helpful for interventional cardiologists
who feel less confident in determining stent size based on
angiography alone when intravascular imaging is not available.
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Limitations
This study is not free from limitations. First, this was a
single-center study with a small sample size; therefore, caution
should be exercised when extrapolating the findings to other
studies. Since this study population represents a significant
coronary disease that requires complex coronary intervention,
the findings cannot be extrapolated to mild to intermediate
coronary lesions. While the software was developed as a
real-time coronary intervention assistance tool, the AI-QCA
was performed separately because of the retrospective nature
of this study. Second, IVUS was performed after predilatation
in some cases because of the delivery failure of IVUS catheter,
which may lead to larger MLA than the initial angiography.
Third, even though the qualitative component of coronary artery,
such as calcification or tortuosity, is the important value for
clinicians to make the right decision, AI-QCA cannot assess

the characteristics of coronary arteries. Correlation with IVUS
measurements may not be a gold standard indicator for
evaluating the accuracy of AI-QCA.

Future studies are required to address the utility of the software
in real world clinical practice.

Conclusion
In this study, AI-QCA showed moderate to strong correlation
accuracy compared with IVUS measurements in patients with
coronary artery disease who underwent coronary intervention.
This study provides supporting evidence that the AI-QCA can
be safely used in clinical practice. Automated real-time analysis
of coronary angiography may help practitioners make clinical
decisions with greater confidence. Further prospective studies
are needed to confirm AI-QCA’s clinical utility and safety.
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Table S1. Lesion characteristics of high and low agreement groups in percent area stenosis. Figure S1. Bland-Altman plots of
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is the average of variables measured by artificial intelligence–based quantitative coronary angiography (AI-QCA) and intravascular
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lesion length measured by IVUS and manual QCA.
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