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Abstract

Background: The prediction of posttransplant health outcomes for pediatric heart transplantation is critical for risk stratification
and high-quality posttransplant care.

Objective: The purpose of this study was to examine the use of machine learning (ML) models to predict rejection and mortality
for pediatric heart transplant recipients.

Methods: Various ML models were used to predict rejection and mortality at 1, 3, and 5 years after transplantation in pediatric
heart transplant recipients using United Network for Organ Sharing data from 1987 to 2019. The variables used for predicting
posttransplant outcomes included donor and recipient as well as medical and social factors. We evaluated 7 ML models—extreme
gradient boosting (XGBoost), logistic regression, support vector machine, random forest (RF), stochastic gradient descent,
multilayer perceptron, and adaptive boosting (AdaBoost)—as well as a deep learning model with 2 hidden layers with 100 neurons
and a rectified linear unit (ReLU) activation function followed by batch normalization for each and a classification head with a
softmax activation function. We used 10-fold cross-validation to evaluate model performance. Shapley additive explanations
(SHAP) values were calculated to estimate the importance of each variable for prediction.

Results: RF and AdaBoost models were the best-performing algorithms for different prediction windows across outcomes. RF
outperformed other ML algorithms in predicting 5 of the 6 outcomes (area under the receiver operating characteristic curve
[AUROC] 0.664 and 0.706 for 1-year and 3-year rejection, respectively, and AUROC 0.697, 0.758, and 0.763 for 1-year, 3-year,
and 5-year mortality, respectively). AdaBoost achieved the best performance for prediction of 5-year rejection (AUROC 0.705).

Conclusions: This study demonstrates the comparative utility of ML approaches for modeling posttransplant health outcomes
using registry data. ML approaches can identify unique risk factors and their complex relationship with outcomes, thereby
identifying patients considered to be at risk and informing the transplant community about the potential of these innovative
approaches to improve pediatric care after heart transplantation. Future studies are required to translate the information derived
from prediction models to optimize counseling, clinical care, and decision-making within pediatric organ transplant centers.
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Introduction

Background
The rates of survival for pediatric solid organ transplant
recipients continue to improve. Overall, the 5-year survival rate
for pediatric heart transplant (HT) recipients was 81.5% between
2009 and 2013 [1]. Despite these improvements, ongoing
concerns remain regarding the rates of late acute rejection (LAR)
and hospitalization within this population [2-5]. Increased
number and frequency of LAR episodes and hospitalizations
reduce health-related quality of life of these patients and their
families owing to multifactorial reasons [6-9]. Therefore, any
insight to help stratify those patients at higher risk of
posttransplant complications will allow better resource allocation
and focused interventions to reduce morbidity and mortality.

With the advent of machine learning (ML) methodologies,
predictive modeling has entered a new era, leveraging latent
information from a large number of data points that was
previously not practical. Despite advancements in research using
ML and its predictive utility for prediction of posttransplant
health outcomes, widespread use and clinical application are
still limited in pediatric transplant recipients [10-12]. In addition,
the currently available research into posttransplant health
outcomes in pediatric patients has suffered from a lack of
rigorous statistical approaches, small sample sizes comprising
samples from single transplant centers with limited
generalizability, and other methodological limitations [13-15].
Furthermore, general linear modeling or Cox proportional
hazards regression approaches are prevalent in this research,
offering limited predictive utility [16-18].

Data-driven modeling and ML approaches have had limited
application in prediction of outcomes in pediatric heart
transplantation despite the availability of robust databases of
patient electronic health records (EHRs) and longitudinal data
[19-21]. Among these few studies, the use of ML approaches
in pediatric transplantation has resulted in limited success in
predicting health outcomes [10,15,16]. However, the use of
advanced ML approaches with these data are unexplored and
can inform care and decision-making.

ML and deep learning (DL) approaches can identify unique risk
factors as well as their complex relationship with outcomes
using prediction modeling. Results from these approaches can
thereby aid in identifying patients considered to be at high risk
and provide a solid foundation for improved clinical care and
risk stratification as well as enhance decision-making. In our
previous work, DL and traditional ML techniques were applied
to United Network for Organ Sharing (UNOS) patient data from
a single large pediatric transplant center in the southwestern
United States. Despite having to work with a relatively small
sample, we demonstrated that traditional ML models can predict
hospitalizations across liver, kidney, and heart transplantations
with moderate accuracy [15]. This study sought to take a step

further by testing and examining the utility of ML and DL
models for predicting LAR and mortality at 1, 3, and 5 years
after transplantation using national UNOS data on pediatric HT
recipients. To the best of our knowledge, this is the first study
that uses national registry data to evaluate ML-based prediction
models for multiple post–heart transplantation outcomes across
multiple prediction windows. In addition, the use of DL
approaches with national UNOS data represents an important
innovation for the prediction of posttransplant outcomes in
pediatric patients. The long-term goal of this endeavor is to
continue to improve the ability of pediatric transplant teams to
identify patients early on who are at higher risk of poor
posttransplant outcomes. Using the information gained from
these modeling techniques will directly translate into the
development of clinical decision-making support tools for
pediatric transplantation teams and allow an opportunity to
perform targeted interventions to potentially improve outcomes.

The remainder of this paper is organized as follows: in the
Related Work subsection, we review the recent literature on
building prediction models for outcomes of pediatric organ
transplantation. In the Methods section, we describe the data
set, problem setting, outcome definition, selection of variables,
data preprocessing, ML and DL modeling, and model
interpretation. In the Results section, we present the
characteristics of the patient cohort, performance of the
prediction models, and interpretation of the models. In the
Discussion section, we discuss the principal findings, clinical
meaningfulness of model interpretation, ways to improve
modeling, and limitations, followed by a Conclusions
subsection.

Related Work
To identify related work in the literature, we searched PubMed
for these terms in all text over the last 10 years: [(heart
transplant*) AND (pediatric* or paediatric* or child* or
adolescen*) AND (machine learning)]. A total of 123 studies
were imported into Covidence (Veritas Health Innovation Ltd),
a web-based software platform that facilitates conducting
systematic reviews of research literature. Among the 123 studies,
Covidence identified 22 (17.9%) duplicates. Next, we screened
the remaining 101 studies using titles and abstracts and excluded
83 (82.2%) as irrelevant. Full-text review was conducted by
multiple reviewers on the remaining 18 studies, of which 14
(78%) were ultimately excluded (n=7, 50%, did not use a
pediatric sample or subsample; n=4, 29%, were not conducted
using data from HT recipients; and n=3, 21%, did not use some
form of ML or similar predictive modeling approach). Thus, of
the initial 123 studies, 4 (3.3%; Table 1) were ultimately
identified that predicted posttransplant health outcomes using
ML with patient EHR data or administratively collected medical
data of pediatric HT recipients. The literature search is
documented in the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flowchart shown in
Figure S1 in Multimedia Appendix 1.
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Table 1. Related work in the literature.

AUROC, best
(outcome)

AUROCa, best
(95% CI)

OutcomesSample
size, n

SamplePrediction methodsStudy

N/Ab0.750 (0.720-
0.780)

Prolonged length of stay
(>30 days) after transplan-
tation

4414Pediatric Heart Transplant
Society database; aged <18
years; heart transplantation;
discernible discharge date;
transplanted between Jan-
uary 2005 to December
2018

Stepwise logistic re-
gression, gradient
boosting, and random
forest

Gupta et al
[11], 2022

0.740 (5‐year
hospitalization)

N/AHospitalization owing to
rejection over 1-, 3-, and
5-year posttransplant peri-
ods

193UNOSc data for a single
transplant center; aged 0-18
years; heart transplant;
transplanted between 1988
and May 31, 2017

Logistic regression,
multilayer perceptron,
sequential minimal
optimization algo-
rithm polynomial ker-
nel, random forest,
and deep learning

Killian et
al [15],
2021

0.720 (1‐year
mortality)

N/AMortality over 1-, 3-, and
5-year posttransplant peri-
ods

2802UNOS data; aged <18 years;
heart transplant; transplanted
between January 2006 and
December 2016

Artificial neural net-
works, classification
and regression trees,
and random forest

Miller et al
[12], 2019

N/A0.836 (0.823-
0.849)

1-year and 90-day all-
cause mortality

8349UNOS data; aged <18 years;
heart transplant; transplanted
between January 1994 and
December 2016

Random forest, XG-

Boostd, and L2 regu-
larized logistic regres-
sion

Miller et al
[22], 2022

aAUROC: area under the receiver operating characteristic curve.
bN/A: not applicable.
cUNOS: United Network for Organ Sharing.
dXGBoost: extreme gradient boosting.

Miller et al [12] conducted a study that involved pediatric
patients from the UNOS database who underwent heart
transplantation and aimed to predict mortality within 1, 3, or 5
years using artificial neural networks (NNs), classification and
regression trees, and random forest (RF), and the area under the
receiver operating characteristic curve (AUROC) values of the
testing data were 0.72, 0.61, and 0.60, respectively. All models
displayed poor sensitivity in identifying positive cases, and the
authors explained that the ML algorithm tended to be biased
toward the common outcomes rather than toward the rarities.
In a more recent study, Miller et al [22] used 3 binary
classification algorithms (RF, extreme gradient boosting
[XGBoost], and L2 regularized logistic regression [LR]) and 3
survival models (random survival forest, survival gradient
boosting, and L2 regularized Cox regression) to predict 1-year
and 90-day mortality after heart transplantation. The study used
shuffled 10-fold cross-validation (CV) and rolling CV where
each fold is a transplantation year, and training data are from
at least 1 transplantation year before the evaluated year. In the
shuffled CV, RF was the best-performing model, and it achieved
a much better performance (AUROC 0.893, 95% CI
0.889-0.897) than XGBoost, which was the best model in the
rolling CV (AUROC 0.657, 95% CI 0.647-0.667), indicating
that the overprediction performance is limited by the temporal
shift in the data. Our study differs from the work by Miller et
al [22] in that we compared the performance of mortality and
organ rejection prediction models. We also used Shapley
additive explanations (SHAP), a post hoc explanation method,
to rank the features by their importance.

Gupta et al [11] analyzed the data in the Pediatric Heart
Transplant Society database and identified factors that are
related to the prolonged length of stay (>30 days) after heart
transplantation among pediatric patients. This study evaluated
stepwise LR, gradient boosting, and RF when building the
risk-prediction model for prolonged length of stay. The final
prediction model achieved an AUROC value of 0.75 (95% CI
0.72-0.78) for the overall population. Killian et al [15] extracted
the data of pediatric patients who underwent heart, kidney, or
liver transplantation from UNOS data from a single transplant
center in the United States and focused on the prediction of
hospitalization within the observation windows of 1, 3, and 5
years after each patient’s first organ transplantation using both
traditional ML methods (RF, LR, multilayer perceptron [MLP],
and support vector machine [SVM]) and a simple feed-forward
NN model. The overall performance of DL was not better than
that of the traditional ML methods. The best-performing model
was the RF model for 5-year hospitalization prediction (AUROC
0.74). Our study differs from the work by Killian et al [15] in
three aspects: (1) we used national UNOS data for the modeling,
(2) we built models to predict organ rejection and mortality
outcomes and compared them, and (3) we used the observation
data collected up to the time of the transplantation procedure
to predict the outcomes.
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Methods

UNOS Data
For this study, we used national UNOS data from 1987 to 2019
[23]. This database contains pretransplant medical information
and long-term and posttransplant health outcomes of organ
transplant recipients at the national and center level. A record
of each recipient in the UNOS data is established when the
recipient is registered as a candidate for an organ transplant.
Each recipient’s record includes their pre- and posttransplant
medical and health data completed at 3 time points: being listed
for a transplant (ie, transplant candidate registration), at the time
of the transplant procedure (ie, transplant recipient registration),
and annually as a posttransplant follow-up (ie, transplant
recipient follow-up [TRF]). Information related to pretransplant

conditions, medical data concerning the transplant procedure,
posttransplant complications, and long-term health outcomes
are also collected and reported by the transplant centers. These
data were stored in the corresponding variables, which were
then used as predictors and responses for different ML and DL
models.

The overall workflow for this study is shown in Figure 1. After
the identification of the patient cohort, we defined the prediction
outcomes and chose the observation and prediction windows.
Relevant variables were selected based on previous studies
[17,24-31] and chosen by a medical expert from the available
data as potential predictors. Subsequently, data normalization
and imputation were performed, followed by ML and DL
modeling and modeling interpretation. Details of each step are
explained in the following subsections.

Figure 1. Overall workflow. DL: deep learning; ML: machine learning.

Recipient Determination
The target recipients for this study are primary pediatric HT
recipients aged 0 to 18 years. The exclusion criteria were as
follows: retransplantation, records with missing follow-up dates,

no follow-up information during the prediction window, and
patients with unknown or missing values in their outcome
variables. Table 2 shows the basic demographic characteristics
of the entire cohort.
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Table 2. Characteristics of the entire patient cohort.a

P valueDeceased (n=2314)Alive or unknown (n=5887)Overall (N=8201)Recipient

<.0017.76 (6.62)6.39 (6.38)6.78 (6.48)Age (years), mean (SD)

.631019 (44.04)2558 (43.45)3577 (43.62)Sex (female), n (%)

<.001Race, n (%)

16 (0.69)25 (0.42)41 (0.5)American Indian or Alaska Native

52 (2.25)235 (3.99)287 (3.5)Asian

621 (26.84)970 (16.48)1591 (19.4)Black or African American

16 (0.69)13 (0.22)29 (0.35)Native Hawaiian or other Pacific Islander

1276 (55.14)3505 (59.54)4781 (58.3)White

37 (1.6)113 (1.92)150 (1.83)Multiracial

<.001294 (12.71)1023 (17.38)1317 (16.06)Ethnicity (Hispanic), n (%)

.00217.91 (5.2)17.53 (4.8)17.64 (4.92)BMI (kg/m2), mean (SD)

<.001116.80 (45.12)107.70 (43.88)110.28 (44.42)Height (cm), mean (SD)

<.001Education, n (%)

28 (1.46)76 (1.37)102 (1.4)None

543 (28.24)1551 (27.87)2044 (28)Grade school (grades 0-8)

370 (19.24)809 (14.54)1149 (15.74)High school (grades 9-12) or GEDb

14 (0.73)22 (0.4)32 (0.44)Attended college or technical school

0 (0)1 (0.02)1 (0.01)Associate or bachelor’s degree

900 (46.8)2986 (53.66)3886 (51.9)N/Ac (aged <5 years old)

<.001134 (7.12)270 (9.95)404 (8.79)Prior cardiac surgery, n (%)

.13Diabetes, n (%)

1737 (97.09)5284 (97.91)7021 (97.7)No

4 (0.22)12 (0.22)16 (0.22)Type 1

1 (0.06)7 (0.13)8 (0.11)Type 2

<.0010.77 (1.6)0.6 (1.08)0.64 (1.23)Serum creatinine (mg/dL), mean (SD)

<.001518 (25.84)1768 (32.39)2286 (30.63)CMVd+, positive, n (%)

<.001656 (52.48)2321 (49.37)2977 (50.03)EBVe+, positive, n (%)

<.001ABOf match, n (%)

1817 (78.52)4536 (77.05)6353 (77.47)Identical

462 (19.97)1154 (19.6)1616 (19.7)Compatible

35 (1.51)197 (3.35)232 (2.83)Incompatible

Primary diagnosis, n (%)

.211180 (50.99)3092 (52.52)4272 (52.09)Cardiomyopathy

.291048 (45.29)2590 (44)3638 (44.36)CHDg

.6186 (3.72)205 (3.48)291 (3.55)Other

Secondary diagnosis, n (%)

.3320 (0.86)65 (1.10)85 (1.04)CHD with HLHSh

<.001312 (13.48)1388 (23.58)1700 (20.73)CHD with prior surgery

.291034 (44.68)2554 (43.38)3588 (43.75)Dilated myopathy

.0953 (2.29)175 (2.97)228 (2.78)Hypertrophic cardiomyopathy

JMIR Cardio 2023 | vol. 7 | e45352 | p. 5https://cardio.jmir.org/2023/1/e45352
(page number not for citation purposes)

Killian et alJMIR CARDIO

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


P valueDeceased (n=2314)Alive or unknown (n=5887)Overall (N=8201)Recipient

.00193 (4.02)349 (5.93)442 (5.39)Restrictive myopathy

<.001Ventricular assist device, n (%)

779 (77.05)3401 (78.45)4180 (78.19)None

111 (10.98)650 (14.99)761 (14.23)LVADi

4 (0.4)12 (0.28)16 (0.3)RVADj

0 (0)6 (0.14)6 (0.11)TAHk

36 (3.56)178 (4.11)214 (4)LVAD + RVAD

81 (8.01)88 (2.03)169 (3.16)LVAD, RVAD, or TAH unspecified

<.001Year of transplant (range), n (%)

185 (8)202 (3.43)387 (4.73)1987-1990

551 (23.82)523 (8.88)1074 (13.1)1991-1995

492 (21.26)658 (11.18)1150 (14.03)1996-2000

448 (19.37)807 (13.72)1255 (15.3)2001-2005

363 (15.68)1185 (20.13)1548 (18.88)2006-2010

225 (9.73)1652 (28.05)1877 (22.88)2011-2015

50 (2.16)860 (14.61)910 (11.09)2016-2018

.00384.92 (160.5)99.43 (209.3)95.33 (196.89)Days listed, mean (SD)

<.00120.73 (57.93)37.71 (61.94)32.92 (61.31)Days listed as status 1Al, mean (SD)

aNonmissing values are used to calculate summary statistics, frequency, and percentages.
bGED: General Educational Development Test.
cN/A: not applicable.
dCMV: cytomegalovirus.
eEBV: Epstein-Barr virus.
fABO: the 4 main blood types are A, B, O, and AB; for a blood transfusion, the ABO blood group system is used to match the blood type of the donor
and the person receiving the transfusion.
gCHD: congenital heart defect.
hHLHS: hypoplastic left heart syndrome.
iLVAD: left ventricular assist device.
jRVAD: right ventricular assist device.
kTAH: total artificial heart.
lStatus 1A: the United Network for Organ Sharing status code 1A is the most severe designation for need for transplantation. Candidates on the waiting
list at this level are critically ill and are receiving some form of mechanical circulatory support.

Outcome Definition
In this study, we studied 2 prediction outcomes: rejection and
mortality after transplantation. For each prediction outcome
(rejection or mortality), we considered 3 different outcome
prediction windows of 1, 3, and 5 years after transplantation.
The observation window used was the information from baseline
data collected at listing or registration for a transplant and
immediately after the transplant procedure. The data collected
from the observational window were used as the predictors. For
the prediction window of 1-year outcomes, we used the last
TRF information of each patient within 1 year after
transplantation to determine the 1-year outcomes. Similarly, for
the prediction window of 3-year outcomes, outcomes were
determined using the annual follow-up information of each
patient from the time of transplantation until 3 years after
transplantation. For the prediction window of 5-year outcomes,

outcomes were determined using the annual follow-up
information of each patient from the time of transplantation
until 5 years after transplantation. Figure 2 illustrates the
observation window and the outcome prediction windows for
this study.

In the UNOS data, rejection outcome was defined by 2 variables
jointly: hospitalized for rejection during follow-up period
(HOSP_REJ) and episodes of acute rejection
(ACUTE_REJ_EPI). In the study period, UNOS used these
variables at different times: HOSP_REJ from April 1, 1994,
and ACUTE_REJ_EPI from June 30, 2004. Therefore, we used
these variables as such to define presence or absence of
rejection. Therefore, rejection was determined with HOSP_REJ
before June 30, 2004; after June 30, 2004, the rejection outcome
was positive if either HOSP_REJ or ACUTE_REJ_EPI was
Yes and negative otherwise. Mortality was determined using
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the corresponding variables from the UNOS thoracic follow-up
data set. The latest collection date for pediatric HT recipients
was February 28, 2019, in the data set. Tables 3 and 4 show the
number of valid recipients with known prediction outcome in

each prediction window. Table 5 shows the number of patients
included in data sets for predicting outcomes in multiple
prediction windows.

Figure 2. Observation window and outcome prediction windows.

Table 3. Number of valid recipients with known rejection prediction outcome in each prediction window.

5-year prediction window (n=2709), n (%)3-year prediction window (n=2582), n (%)1-year prediction window (n=2882), n (%)Rejection

225 (8.31)553 (21.42)2100 (72.87)No

2484 (91.69)2029 (78.58)782 (27.13)Yes

Table 4. Number of valid recipients with known mortality prediction outcome in each prediction window.

5-year prediction window (n=2237), n (%)3-year prediction window (n=3306), n (%)1-year prediction window (n=6035), n (%)Mortality

969 (43.32)2388 (72.23)5608 (92.92)No

1268 (56.68)918 (27.77)427 (7.08)Yes

Table 5. Patients appearing in data sets for different prediction windows.

OutcomesCharacteristics

Hospitalization, nRejection, n

11647Have outcomes in year 1 and year 2 or 3 but not in year 4 or 5

3510Have outcomes in year 1 and year 4 or 5 but not in year 2 or 3

17461Have outcomes in year 2 or 3 and year 4 or 5 but not in year 1

27766Have outcomes in year 1, year 2 or 3, and year 4 or 5

Selection of Variables
Through literature review, we selected common features in
UNOS data in prediction models for transplantation outcome
predictions [17,24-31]. The variables were selected from donor,
recipient, and donor-recipient variables. In addition, a medical
expert and coauthor (DG) reviewed the list of identified features
and determined the ones that were clinically relevant and should
be used in predictive modeling. In addition, diagnosis was
selected as a variable and included congenital heart defect
(CHD), CHD with hypoplastic left heart syndrome,
cardiomyopathy, CHD with prior surgery, dilated
cardiomyopathy, hypertrophic cardiomyopathy, restrictive
myopathy, and other. Any variables with >50% missing values
were excluded from analysis.

Normalization and Imputation
The selected variables included categorical and continuous
numerical variables. Categorical variables were coded into

numerical variables for computation. The values of all
continuous numerical variables were normalized between 0 and
1. Because of missing values, we conducted a missing data
imputation using multivariate imputation by chained equations
[32]. After normalization and imputation, variables that were
collinear with other variables were excluded. This process
resulted in a list of the 69 selected variables in different groups.
Description and type of each variable are provided in Table S1
in Multimedia Appendix 1. Details of coding for each
categorical variable can be found in Table S2 in Multimedia
Appendix 1.

ML and DL Modeling
In this study, 7 ML models and 1 DL model were tested. The
ML models were XGBoost, LR, SVM, RF, stochastic gradient
descent, MLP, and adaptive boosting (AdaBoost). We used the
scikit-learn package in Python (Python Software Foundation)
for the implementation of all ML models. All ML models were
implemented with default settings. The DL model was
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implemented with the Python packages of TensorFlow and
Keras. After experimenting with different hyperparameters, the
selected DL model included 2 hidden layers with 100 neurons
and a rectified linear unit (ReLU) activation function followed
by batch normalization for each and a classification head with
a softmax activation function. The model used the adaptive
gradient algorithm with a learning rate of 0.01 as optimizer and
used cross-entropy as loss function. We trained the DL model
for 50 epochs at most, with batch size of 32 and early stopping.
The evaluation metrics reported include weighted precision,
weighted recall, weighted F1-score, weighted AUROC values,
and area under the precision-recall curve (AUPRC) values.
AUROC measures the model’s ability to distinguish between
positive and negative classes, whereas AUPRC measures the
trade-off between precision and recall. AUPRC is often
considered when the data sets used to build the models are
imbalanced. We used 10-fold CV to evaluate all ML models.
In each fold, a random sample of 90% of the instances were
used for training, and the remaining 10% of the samples were
used for testing. All evaluation metrics were computed using
10-fold CV for all models. The performances of the tested ML
and DL models are reported in the Results section.

Modeling Interpretation
Prediction results of ML and DL models are often considered
difficult, and sometimes even impossible, to interpret for both
users and developers. With the widespread application of ML
and DL, understanding why a model makes a certain prediction
becomes even more important. This has led to many research
studies in the field of explainable artificial intelligence [33].
These studies have proposed, developed, and tested a wide range
of methods for interpreting prediction results of ML and DL
models. Among these methods, SHAP provides a state-of-the-art
unified framework for explainable artificial intelligence.

SHAP is an additive feature attribution approach for interpreting
prediction results of an ML or DL model [34]. It assigns an
importance value to each feature for a particular prediction using
the classic Shapley values from game theory and their related
extensions. SHAP values are attributed to the change in the
expected model prediction compared with the base model fitted
on background data when conditioning on each feature. The
implementation of SHAP is publicly available on GitHub [35].
In this study, we used SHAP to interpret prediction results of
the best-performing ML model: RF. We used the SHAP
TreeExplainer for the interpretation of RF predictions in terms
of predicted probabilities. Details of interpretation are explained
in the Results section.

Ethical Considerations
In this study, we used publicly available deidentified UNOS
data. Therefore, it was determined as exempt by the institutional
review board of Florida State University.

Results

Characteristics of the Patient Cohort
Our cohort consisted of 8201 patients (UNOS data from 1987
to 2019), of whom 5887 (71.78%) were alive at the time of
analysis. The characteristics of the overall patient cohort are
shown in Table 2. Overall, the mean age of the cohort was 6.78
(SD 6.48) years, and 43.62% (3577/8201) of the patients were
female. Interestingly, important differences were observed in
race distribution, prior cardiac surgeries, and frequency of renal
dysfunction between the patients who were deceased and those
who were alive. There were significantly more Black or African
American patients in the deceased group than the alive group
(621/2314, 26.84% vs 970/5887, 16.48%; P<.001). No
statistically significant difference was observed with a primary
diagnosis of CHD (P=.29) or cardiomyopathy (P=.21) as the
reason for transplantation. Furthermore, the diagnosis of CHD
with prior surgeries (P<.001), prior cardiac surgery (P<.001),
and restrictive cardiomyopathy (P=.005) was seen more
frequently in the alive group. However, the number of valid
recipients for each prediction window of the 2 different
outcomes varied (Tables 3 and 4); for example, there were 2882
recipients with regard to the question on rejection within 1 year,
of whom 2100 (72.87%) had no episodes of rejection, whereas
782 (27.13%) had episodes of rejection. Overall, the frequency
distributions of episodes of rejection at 1, 3, and 5 years after
transplantation were 27.13% (782/2882), 78.58% (2029/2582),
and 91.69% (2484/2709), respectively (Table 3). Similarly, the
frequency distributions of 1-, 3- and 5-year mortality outcomes
were 7.08% (427/6035), 27.77% (918/3306), and 56.68%
(1268/2237), respectively (Table 4).

Performance of the Predictive Models
The performance details of each of the tested models are
reported in Table 6. We observed that there was a variation in
the type of model performance with some of the models
performing better than others for some outcomes. When
considering AUROC as the key performance evaluation
measure, RF outperformed other ML and DL algorithms in
predicting 5 of the 6 outcomes (all except 5-year rejection;
AUROC 0.664 and 0.706 for 1-year and 3-year rejection,
respectively, and AUROC 0.697, 0.758, and 0.763 for 1-year,
3-year, and 5-year mortality, respectively). For the 5-year
rejection prediction, the AdaBoost model achieved the best
performance (AUROC 0.705).
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Table 6. Performance of different prediction models for rejection and mortality.

AUPRCbAUROCaF1-scoreRecallPrecisionPrediction models

Rejection

At 1 year

0.5760.6410.6910.7260.688XGBoostc

0.5760.6480.6790.7370.698LRd

0.6140.4850.6140.7280.531SVMe

0.5750.6640.6770.7350.695RFf

0.5920.5470.6230.6110.641SGDg

0.5780.6270.6680.7120.662MLPh

0.5760.6480.6960.7350.699AdaBoosti

0.6040.5040.6290.6990.610NNj

At 3 years

0.7390.6950.7280.7680.717XGBoost

0.7370.6920.7110.7790.709LR

0.6630.4800.6910.7850.617SVM

0.7380.7060.7070.7850.724RF

0.6680.5230.6790.6770.680SGD

0.7330.6750.7120.7660.697MLP

0.7340.7030.7280.7690.717AdaBoost

0.6640.4910.6940.7800.673NN

At 5 years

0.8880.6970.8810.9150.873XGBoost

0.8850.6850.8770.9160.841LR

0.8410.4620.8770.9170.841SVM

0.8820.6760.8770.9170.841RF

0.8510.5260.8330.8160.853SGD

0.8820.6670.8730.9050.847MLP

0.8870.7050.8800.9110.866AdaBoost

0.8470.4840.8770.9150.853NN

Mortality

At 1 year

0.8380.6630.8960.9260.878XGBoost

0.8350.6690.8950.9290.899LR

0.8680.5020.8950.9290.863SVM

0.8340.6970.8950.9290.863RF

0.8590.5340.8910.9120.875SGD

0.8370.6520.8970.9280.887MLP

0.8380.6670.8980.9260.886AdaBoost

0.8680.4930.8940.9270.863NN

At 3 years

0.5670.7370.7290.7450.725XGBoost
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AUPRCbAUROCaF1-scoreRecallPrecisionPrediction models

0.5660.7190.6990.7390.709LR

0.5840.5740.6070.7220.626SVM

0.5690.7580.7060.7450.718RF

0.5840.5640.6140.5960.646SGD

0.5670.7110.7070.7350.707MLP

0.5650.7380.7200.7440.720AdaBoost

0.6000.5030.6230.6770.603NN

At 5 years

0.5750.7480.6890.6900.688XGBoost

0.5590.7180.6690.6710.668LR

0.5300.6130.5550.5880.577SVM

0.5740.7630.7170.7180.717RF

0.5210.5960.6000.6040.599SGD

0.5500.6830.6220.6380.636MLP

0.5620.7350.6920.6920.692AdaBoost

0.5140.5170.5010.5340.508NN

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cXGBoost: extreme gradient boosting.
dLR: logistic regression.
eSVM: support vector machine.
fRF: random forest.
gSGD: stochastic gradient descent.
hMLP: multilayer perceptron.
iAdaBoost: adaptive boosting.
jNN: neural network.

When examining the performance of the tested models across
different prediction outcomes, the AUROC values for models
predicting mortality were considerably higher than those of
models predicting rejection (mean AUROC for rejection
prediction 0.610, SD 0.090, and mean AUROC for mortality
prediction 0.648, SD 0.091; P<.001).

When comparing the performance of the tested models across
different prediction windows of each outcome, there is no
significant difference among the AUROC values of the models
for different prediction windows of rejection at significance
level of .01. However, the AUROC value of the models for the
1-year prediction window of mortality is lower than the AUROC
values of the models for the 3-year and 5-year prediction
windows of mortality.

With respect to AUPRC values, XGBoost outperformed the
other models in 3 of the 6 outcomes (ie, AUPRC 0.739 for
3-year rejection, AUPRC 0.888 for 5-year rejection, and AUPRC

0.575 for 5-year mortality). The NN outperformed other models
in 2 outcomes (ie, AUPRC 0.868 for 1-year mortality and
AUPRC 0.600 for 3-year mortality). For the 1-year rejection
prediction, the SVM performed slightly better than the NN
(AUPRC 0.614). Among all outcomes, the prediction of 1-year
mortality and 5-year rejection showed significantly better
performance than the prediction of other outcomes (mean
AUPRC for 1-year mortality prediction 0.847, SD 0.015, and
mean AUPRC for 5-year rejection prediction 0.870, SD 0.020).

In Figure 3, we show a comparison of the performances of
different models across different prediction windows and
outcomes. When we evaluated the AUROC values of different
algorithms across different prediction windows and outcomes,
we observed that the DL model consistently had worse
performance than the other algorithms. This finding is also
consistent with our previous analysis, which used data from a
single transplant center in the southwestern United States [15].
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Figure 3. (A) Area under the receiver operating characteristic curve values of different machine learning and deep learning algorithms for different
outcomes. (B) Area under the precision-recall curve values of different machine learning and deep learning algorithms for different outcomes. AdaBoost:
adaptive boosting; LR: logistic regression; MLP: multilayer perceptron; NN: neural network; RF: random forest; SGD: stochastic gradient descent;
SVM: support vector machine; XGBoost: extreme gradient boosting.

Interpretation of the Best-Performing Models by SHAP
Value
Figure 4 demonstrates the impact of 20 predictor variables in
terms of mean (|SHAP value|) on the outcome prediction results
of RF models. The length of each bar indicates the strength of
the impact the corresponding variable has on the model
prediction. An examination of the impact of the predictor
variables in terms of mean (|SHAP value|) across all RF models
suggests that, overall, the recipient variables of graft status after
transplantation, education, any known malignancies since listing
for transplantation, ethnicity, and height, as well as donor height
and weight, have a higher impact on prediction. In addition,
graft status immediately after the transplantation was a salient
predictor in nearly every model and often the most predictive
per SHAP value. Pretransplant medical factors such as prior

cardiac surgeries, the diagnosis of a congenital heart condition,
and the use of ventricular assist devices and mechanical
ventilation before the transplant procedure were important
predictors across models and outcomes. Patient medical factors
that were shown to be predictive included weight; a history of
prior malignancies; and albumin, bilirubin, and creatinine levels.
Furthermore, factors such as donor cause of death, ischemic
time, waitlist duration, and duration of time listed as status 1A
(the UNOS status code 1A is designated for candidates on the
waiting list who have the highest priority on the basis of medical
urgency; patients may be listed as status 1A for 30 days at any
time after left ventricular assist device implantation when they
are clinically stable) were found to be predictive.

Table S3 in Multimedia Appendix 1 shows the predictor
variables that have higher impact on prediction by outcome,
prediction window, and ML algorithm according to SHAP value.
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Figure 4. Impact of the top 20 variables on rejection and mortality prediction by mean (|SHAP value|) for the random forest model. (A) Rejection:
1-year window. (B) Rejection: 3-year window. (C) Rejection: 5-year window. (D) Mortality: 1-year window. (E) Mortality: 3-year window. (F) Mortality:
5-year window. SHAP: Shapley additive explanations. For a higher-resolution version of this figure, see Multimedia Appendix 2.

Discussion

Principal Findings
In this study, we compared 7 ML models and 1 DL model and
examined their ability to predict rejection and mortality 1, 3,
and 5 years after pediatric heart transplantation. There has been
increasing use of advanced mathematical modeling using large
data sets to predict outcomes in pediatric transplantation [10-12].
However, despite initial experience, much work needs to be
done to further evaluate and refine the best strategies and
modeling techniques to optimally use these methods for
advancing clinical care. In this study, RF, XGBoost, and
AdaBoost demonstrated the highest AUROC values throughout
the posttransplant outcomes across the 3 observation windows.
As a decision tree–based ensemble ML algorithm, RF has been
shown to yield the best performance in many other studies on
small, tabulated data sets, which is also the case in our study.
A possible reason is that RF generally performs well when the
data set has a mix of categorical and numeric features; in
addition, RF is less influenced by outliers than other algorithms.
Nonetheless, based on best practice in ML modeling, one would
need to experiment with multiple ML algorithms on a particular
data set to see which ML model works best. In our study, when
AUPRC was used as the primary performance measure,
XGBoost outperformed other models in 3 of the 6 outcomes
and yielded slightly better performance than RF. The NN
slightly outperformed other models in 2 outcomes. Most
importantly, the use of SHAP values to evaluate the relative
importance of predictors in these models adds to the clinical
interpretability, utility, and potential translation into clinical
care. We also observed that the DL model consistently had
worse performance than the ML algorithms, which may be

related to the small amount of data available because,
empirically, DL models perform better with a large number of
data points. This can also suggest that DL modeling in this
clinical scenario may not be the most appropriate strategy. This
finding is also consistent with our previous analysis, which used
data from a single transplant center in the southwestern United
States [15]. However, further research is needed to validate this
conclusion.

The results from this modeling demonstrate the important
challenges of using registry and administrative data to model
adverse medical events during posttransplant care of pediatric
HT recipients. Prior research and modeling of posttransplant
data in pediatric care similarly found poor-to-fair predictive
utility and sensitivity using classification and regression trees,
RF, and artificial NN approaches [10-12]. Previous research
using RF has identified key factors in predicting ideal
posttransplant outcomes 3 years after liver transplantation [10].
However, results from ML models in pediatric transplantation
across kidney, liver, and heart recipients from 1 center were
similarly suboptimal [15]. In adult populations, predictive
validity with ML approaches has not achieved encouraging
results [28,36-43]. Many of these studies have focused only on
mortality in adult HT recipients, offering little insight for
pediatric transplant teams managing instances of other important
outcomes such as rejection in a much more heterogenous
population. Despite the UNOS being the largest registry of data
for pediatric transplant patients, there are inherent data quality
issues that may limit the optimal use of these analytical
approaches. Therefore, urgent efforts are needed to improve
quality of data entry and reduce the amount of missing data.
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Model Interpretation
SHAP values [34] were used in this study to provide greater
interpretability of the results and to quantify the relative
influence of individual variables within these models. Our data
highlight the importance of graft status immediately after
transplantation as being a salient predictor in nearly every
model. Graft function immediately after transplantation is
affected by a complex interplay of donor, preservation, recipient,
and perioperative factors. These factors are unique in individual
patients; however, the presence of suboptimal graft function
immediately after transplantation is a strong predictor of 1-, 3-,
and 5-year rejection and mortality. This observation does not
necessarily change clinical management currently; however, it
highlights the importance of in-depth evaluation and
optimization of donor, recipient, and transplantation factors,
which can influence graft function and the strength of its
influence on important clinical outcomes; for example, donor
myocardial function, ischemic time, and sensitization are a few
factors that can influence graft function after transplantation.
Other factors such as pretransplant use of ventricular assist
devices and mechanical ventilation are important factors in
predicting clinical outcomes as well. Furthermore, liver or
kidney dysfunction and being listed as status 1A, all of which
can be considered surrogate markers for a patient who is sicker,
have important predictive influence on the outcomes. Various
donor factors such as weight, height, and BMI, as well as
recipient-to-donor weight ratio, influenced the predictive
models. We hypothesize that these factors were likely related
to the smaller children who are more likely to have CHD and,
in addition, may have a larger impact owing to the
donor-recipient size discrepancy in thoracic cavity. Likewise,
other factors such as pretransplant medical factors, including
the number of prior cardiac surgeries and a diagnosis of CHD,
were important predictors across various models and outcomes.
Previous studies have shown that a single-ventricle physiology
secondary to hypoplastic left heart syndrome influences
outcomes; however, this was not the case in our study. In
addition, longer waitlist duration likely secondary to medical
or surgical factors, such as organ dysfunction, human leukocyte
antigen sensitization or mismatch, and the need for other
procedures were important factors in the predictive models.
These medical factors have been similarly identified in prior
research using ML approaches in other transplantation data,
including those of adult populations [15,28,41-43]. Patient social
factors predicting outcomes across the time frames in this study
included age, ethnicity, level of education, and sex, which have
been reported as important predictors in prior research
[15,28,41-43]. Female and adolescent patients have been shown
to be at greater risk for rejection episodes [44-46] and mortality
than male or younger patients [47-51]. Our study also
highlighted that recipient ethnicity was an important predictor
for 5-year mortality. Obviously, it is difficult to predict why
that is the case, but it does call for a need to further understand
the complex interplay of various psychosocial factors.

Improving Future Modeling
Our modeling efforts build on prior studies through the inclusion
of posttransplant data through subsequent observation windows
using TRF data. Despite this, posttransplant health outcomes

for children and adolescents remain challenging to predict with
better-than-modest accuracy. The UNOS data constitute a large
and valuable registry of transplant patients nationally, yet this
administrative database as is may not be optimal for prediction
of specific posttransplant health outcomes owing to the lack of
granularity at important clinical time points [43]. Importantly,
these data sets also lack important data collected on
psychological, social, and environmental factors, which can
help predict long-term outcomes. In addition to medical factors,
psychosocial variables and family functioning are well-known
to influence outcomes [52-54]. Usually, psychosocial variables
and family functioning are not well represented in these
databases, limiting an important aspect of care, which affects
opportunities for effective predictive modeling. Despite the
importance of psychological and social determinants of
posttransplant pediatric heart transplantation outcomes, these
valuable data are not available in the UNOS database or in
similar transplant data sets, such as the Studies of Pediatric
Liver Transplantation [55] and Scientific Registry of Transplant
Recipients [56] databases. The absence of such parameters can
likely affect the predictive ability of these models; for example,
previously, UNOS data captured physician- or transplant
team–reported nonadherence (UNOS variable: recipient
noncompliant during this follow-up period
[PX_NCOMPLIANT]), but this variable has been excluded
from TRF forms since 2007. Although physician proxy reports,
reports, or opinion of patient medication adherence have inherent
measurement issues [13], the lack of this critical predictor from
these data sets and our inability to include these in modeling
algorithms is a major loss in predictive utility, especially because
of the known strong association between medication
nonadherence and numerous posttransplant outcomes
[2-5,50,57,58]. To overcome these limitations, the inclusion of
granular longitudinal structured and unstructured clinical and
psychosocial data within the patient EHR (eg, text from clinical
notes) using these advanced analytical methods is the next step
to refine the modeling algorithms, thereby increasing chances
of better predictive capability.

Limitations
This study has several limitations, including the inherent ones
related to the use of database and registry data; for example, all
rejections were treated as though they were of the same grade.
In this work, we treated the 3 outcomes independently, although
1 outcome may in fact be a cause of another. Nonetheless, we
built different models for different outcomes. In future work,
we will build multiclass models with different combinations of
outcomes as the prediction outcome. In this work, we grouped
together patients in the UNOS database from 1987 to 2019. In
future work, we will account for era and changes in clinical
practice and ways to determine outcomes. This work aims to
demonstrate the promise and limitations of using ML compared
with using registry data in predicting posttransplantation
outcomes in pediatric recipients. Because of the number of
models and algorithms we evaluated, we used default parameters
for the ML algorithms. With further hyperparameter tuning, we
may be able to further improve the prediction performance of
these models. We also converted categorical variables to
numeric variables when building the prediction models. Another
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approach would have been to use a one-hot coding scheme for
all categorical variables. However, because of the small sample
size, number of categorical variables, and number of categories
in these variables, one-hot coding would have resulted in a very
sparse data set. Nonetheless, we created one-hot variables for
8 important diagnoses for transplantation outcome prediction.

Conclusions
This study evaluates the approaches of 7 ML models and 1 DL
model to predict posttransplant health outcomes using
patient-level data and demonstrates the advantages and
limitations of current methods to inform pediatric heart
transplantation care. Important outcomes can be predicted with
reasonable accuracy using various modeling techniques, and
our study presents a comprehensive comparison of these
techniques. We evaluated the approaches of these 8 models for
6 post–heart transplantation outcomes (organ rejection and
mortality at 1, 3, and 5 years). Among the models for predicting

these 6 outcomes, XGBoost yielded better AUPRC values than
the other models in 3 of the 6 outcomes (ie, AUPRC 0.739 for
3-year rejection, AUPRC 0.888 for 5-year rejection, and AUPRC
0.575 for 5-year mortality). The NN outperformed other models
in 2 outcomes (ie, AUPRC 0.868 for 1-year mortality and
AUPRC 0.600 for 3-year mortality). The SVM performed
slightly better than the NN in 1-year rejection prediction
(AUPRC 0.614). Currently, the DL methods have not
demonstrated additional predictive accuracy compared with the
SVM, RF, and MLP methods. Future research should continue
to seek out rich data sources such as EHRs to improve
granularity and integrate them with existing registry data, using
advanced analytical methods for predictive modeling of
outcomes for pediatric HT recipients. Moreover, clinical notes
in EHRs contain a wide range of social determinants of health
for patients. We will develop a natural language processing
pipeline to extract such information and enrich the prediction
models for social risk stratification.
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ReLU: rectified linear unit
RF: random forest
SHAP: Shapley additive explanations
SVM: support vector machine
TRF: transplant recipient follow-up
UNOS: United Network for Organ Sharing
XGBoost: extreme gradient boosting
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