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Abstract

Background: Warfarin dosing in cardiac surgery patients is complicated by a heightened sensitivity to the drug, predisposing
patients to adverse events. Predictive algorithms are therefore needed to guide warfarin dosing in cardiac surgery patients.

Objective: This study aimed to develop and validate an algorithm for predicting the warfarin dose needed to attain a therapeutic
international normalized ratio (INR) at the time of discharge in cardiac surgery patients.

Methods: We abstracted variables influencing warfarin dosage from the records of 1031 encounters initiating warfarin between
April 1, 2011, and November 29, 2019, at St Michael’s Hospital in Toronto, Ontario, Canada. We compared the performance of
penalized linear regression, k-nearest neighbors, random forest regression, gradient boosting, multivariate adaptive regression
splines, and an ensemble model combining the predictions of the 5 regression models. We developed and validated separate
models for predicting the warfarin dose required for achieving a discharge INR of 2.0-3.0 in patients undergoing all forms of
cardiac surgery except mechanical mitral valve replacement and a discharge INR of 2.5-3.5 in patients receiving a mechanical
mitral valve replacement. For the former, we selected 80% of encounters (n=780) who had initiated warfarin during their hospital
admission and had achieved a target INR of 2.0-3.0 at the time of discharge as the training cohort. Following 10-fold
cross-validation, model accuracy was evaluated in a test cohort comprised solely of cardiac surgery patients. For patients requiring
a target INR of 2.5-3.5 (n=165), we used leave-p-out cross-validation (p=3 observations) to estimate model performance. For
each approach, we determined the mean absolute error (MAE) and the proportion of predictions within 20% of the true warfarin
dose. We retrospectively evaluated the best-performing algorithm in clinical practice by comparing the proportion of cardiovascular
surgery patients discharged with a therapeutic INR before (April 2011 and July 2019) and following (September 2021 and May
2, 2022) its implementation in routine care.

Results: Random forest regression was the best-performing model for patients with a target INR of 2.0-3.0, an MAE of 1.13
mg, and 39.5% of predictions of falling within 20% of the actual therapeutic discharge dose. For patients with a target INR of
2.5-3.5, the ensemble model performed best, with an MAE of 1.11 mg and 43.6% of predictions being within 20% of the actual
therapeutic discharge dose. The proportion of cardiovascular surgery patients discharged with a therapeutic INR before and
following implementation of these algorithms in clinical practice was 47.5% (305/641) and 61.1% (11/18), respectively.

Conclusions: Machine learning algorithms based on routinely available clinical data can help guide initial warfarin dosing in
cardiac surgery patients and optimize the postsurgical anticoagulation of these patients.

(JMIR Cardio 2023;7:e47262) doi: 10.2196/47262
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Introduction

Warfarin is a commonly prescribed oral anticoagulant for
patients who have undergone cardiac surgery and remains the
only guideline-endorsed anticoagulant for patients with
mechanical heart valves. However, considerable interindividual
variability exists in the response to warfarin, with patient age,
BMI, concomitant medications, and genetic status imparting
considerable influence on warfarin maintenance dose
requirements [1-5]. Complicating matters in cardiac surgery
patients is an exaggerated sensitivity to the effects of warfarin
in the immediate postoperative period, predisposing individuals
to supratherapeutic international normalized ratio (INR) values
and bleeding [3,6,7]. Consequently, close monitoring and
frequent dosage adjustments are needed to optimize warfarin
therapy and prevent thromboembolic events and bleeding in
these patients [8].

Warfarin dosing prediction algorithms are commonly used by
clinicians to optimize treatment and reduce the unpredictability
of warfarin responses [9,10]. Recently, machine learning
methods have been used for developing and validating
algorithms that leverage patient information to guide warfarin
dosing and facilitate individualized treatment [11-16]. A
systematic review of 266 studies describing 433 warfarin dosing
algorithms found that most algorithms were derived using both
clinical and genetic variables (344/433, 79.4%), emphasized
dose initiation (373/433, 86.1%) rather than discharge or
maintenance doses, and presented a regression formula that
could be used to compute a weekly or daily dose (239/433,
55.2%) [17]. The most commonly reported outcomes were the
mean absolute and mean prediction errors, with few algorithms
undergoing external validation or clinical utility assessment to
gauge their performance in a clinical setting relative to
clinicians. Moreover, the majority (280/433, 64.7%) of
algorithms were developed using linear regression and may
therefore not accurately characterize the complex relationships
between warfarin dosing and patient features [17].

Considering the complex relationship between warfarin and
patient characteristics, predictive dosing algorithms have been
developed using machine learning methods that can more readily
accommodate nonlinear relationships and interactions between
features. A recent systematic review summarized the
characteristics and quality of 23 studies investigating nonlinear
machine learning algorithms for warfarin dose prediction [13].
Most (78%) of the studies were conducted in Asia or at sites
associated with the International Warfarin Pharmacogenetics
Consortium, with China being the most represented single
country among the included studies (9/23, 39%). The most
common demographic and clinical predictors were age (21/23,
91%), weight (17/23, 74%), height (12/23, 52%), and
concomitant administration of amiodarone (11/23, 48%), while
CYP2C9 (14/23, 61%), VKORC1 (14/23, 61%), and CYP4F2
(5/23, 22%) were the most common genetic predictors. The

most reported outcome measures were the mean absolute error
(MAE) and whether the predicted dose was within 20% of the
actual dose, derived in 91% (21/23) and 83% (19/23) of studies,
respectively. The majority (16/23, 70%) of studies focused on
model development with internal validation only. In addition,
the studies were found to be at high risk of bias, with poor
handling of missing data (20/23, 87%) and a small sample size
(15/23, 65%) being the factors most commonly contributing to
bias.

Recent studies have evaluated more advanced methods for
guiding warfarin dosing in cardiac surgery patients. Specifically,
a study of 13,639 eligible patients identified in the Chinese Low
Intensity Anticoagulant Therapy after Heart Valve Replacement
database compared the performance of a previously described
3-layer Back Propagation Neural Network (BPNN) model with
multiple linear regression for predicting the warfarin
maintenance dose in patients undergoing heart valve replacement
[14,15]. Results demonstrated a slightly improved performance
for the BPNN model, with a MAE in the external validation
group of 0.740 (95% CI 0.671-0.810) compared with 0.750
(95% CI 0.673-0.814) with multiple linear regression [14]. The
percentage of patients in the external validation group whose
predicted absolute error between the predicted and actual doses
was within 20% of the actual dose was also slightly better with
the BPNN algorithm (59.7%) compared with multiple linear
regression (56.6%).

A recent study has also examined the potential for reinforcement
learning in predicting the daily warfarin dose required for
patients undergoing surgical valve replacement [18]. The study
was conducted in China and involved 10,408 patients,
partitioned into training (n=8216), validation (n=932), and test
(n=1260) data sets. The primary outcome was the proportion
of patients in the test data set categorized as excellent
responders, defined as the absence of an INR >3.0 during the
entire postoperative stay and having a discharge INR within the
target range of 1.8-2.5. The individual components of the
primary outcome, defined as the proportion of test patients who
were safety responders (ie, no INRs >3.0 after warfarin
initiation) and target responders (ie, discharge INR within
1.8-2.5), were examined in secondary analyses. Comparisons
were made between the reinforcement learning algorithm,
clinician practice, and other machine learning algorithms.
Overall, the reinforcement learning algorithm outperformed
clinician practice with respect to the proportion of the test set
patients being excellent responders (80.8% vs 41.6%; P<.001).
For the secondary outcomes, the safety responder ratio (RR;
83.1% vs 99.5%; RR 0.83, 95% CI 0.81-0.86; P<.001) and the
target responder ratio (49.7% vs 81.1%; RR 0.61, 95% CI
0.58-0.65; P<.001) were lower for clinicians relative to the
reinforcement learning algorithm. Similarly, performance for
all outcomes was significantly better with the reinforcement
learning algorithm relative to other machine learning
approaches. This study therefore demonstrated the potential for
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applying reinforcement learning to improve outcomes in patients
undergoing cardiac surgery who are treated with warfarin.
However, the generalizability of these findings to other settings
may be limited by the generally lower anticoagulation intensity
examined in this study relative to clinical practice in Western
countries.

Our center, St Michael’s Hospital, is a large, inner-city academic
hospital in Toronto, Ontario, Canada, that performs over 1000
cardiac surgeries per year. Pharmacists and clinicians caring
for cardiac surgery patients identified challenges discharging
warfarin-treated patients with a therapeutic INR as a problem
potentially amenable to machine learning-based solutions for
the hospital health care analytics team. However, generalizing
the findings from existing literature to our setting and patient
population was considered infeasible and inappropriate for
several reasons. First, St Michael’s Hospital treats a diverse
inner-city population that was not reflected in the studies
conducted to date, with most algorithms developed and validated
in predominantly Asian and White populations [13,17]. Second,
the clinical utility of many algorithms, particularly in cardiac
surgery patients, has not been evaluated. It is therefore unclear
how these algorithms compare to existing clinical practice [13].
Third, many algorithms rely on the use of pharmacogenetic
information that is not readily available in most clinical settings,
including ours [16,19]. In addition, although neural networks
and reinforcement learning are promising approaches for
predicting warfarin dose in cardiac surgery patients, the large
sample sizes required for their derivation and validation were
prohibitive at our site. There was therefore a need to develop
an algorithm using routinely available patient data that respected
our data limitations and allowed for more complex relationships
between patient variables and warfarin dose. Considering these
needs, we developed and validated algorithms for predicting
the warfarin dose required to attain a therapeutic INR at the
time of discharge among patients who have undergone cardiac
surgery using commonly available clinical and demographic
data.

Methods

Setting
We conducted a retrospective algorithm development and
validation study using the data of all patients initiating warfarin
during a hospital admission at St Michael’s Hospital between
April 1, 2011, and November 29, 2019. Warfarin dosing in
cardiac surgery patients at St Michael’s Hospital is led primarily
by team pharmacists under a medical directive. The study was
undertaken as a collaboration between clinical staff and the data
scientists of the Data Science and Advanced Analytics team, a

service-based–health care analytics group at St Michael’s
Hospital with expertise in machine learning.

Data Sources
We used the St Michael’s Hospital Enterprise Data Warehouse
(EDW), which integrates and stores structured and unstructured
data at the patient level from several hospital electronic
databases, including inpatient and outpatient electronic medical
charts, inpatient pharmacy records, and results of laboratory
and medical imaging investigations [20]. The EDW is updated
daily using automated algorithms that abstract, clean, and link
data from separate hospital sources using a patient’s unique
medical record number.

Study Population and Outcomes
Our base population included all patients newly initiating
warfarin during the course of hospital admission between April
1, 2011, and November 29, 2019, regardless of indication. From
within this cohort, we included individuals administered
warfarin and undergoing INR testing on at least three separate
occasions during a 7-day period. Next, we excluded individuals
admitted for palliative care and those who died during their
admission, patients transferring to and from the mental health
inpatient unit during their admission, and individuals with
discharge dispositions undermining outcome ascertainment,
including leaving against medical advice and not returning to
the hospital following an authorized pass. Finally, we retained
only those individuals discharged with a therapeutic INR,
defined in this study as ranging from 2.5 to 3.5 for patients
receiving mechanical heart valves and from 2.0 to 3.0 for all
other patients [21].

Outcome Measures and Features
Our primary outcome was the warfarin dose needed to attain a
therapeutic INR at the time of discharge following
cardiovascular surgery. The specific procedures included
mechanical mitral valve surgery (target INR 2.5-3.5), mechanic
aortic valve surgery (target INR 2.0-3.0), prosthetic or tissue
mitral or tricuspid valve surgery (target INR 2.0-3.0), and
new-onset atrial fibrillation of more than 48 hours duration
following aortic surgery or coronary bypass surgery (target INR
2.0-3.0), with target INRs based on clinical practice guidelines
[22-24]. We identified demographic and clinical determinants
of the final warfarin dose from past research and consultation
with experts and included those variables that could be
abstracted from patient records as features in our predictive
models (Textbox 1). To account for heterogeneity in warfarin
sensitivity and dosing requirements, we also included the change
in INR and warfarin dose from their immediately preceding
values, as well as multiplications of the warfarin dose and its
subsequent INR measurement, as model features.
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Textbox 1. Model features and descriptions.

Model features and descriptions:

• Warfarin 1: First postoperative warfarin dose (mg/day)

• Warfarin 2: Second postoperative warfarin dose (mg/day)

• Warfarin 3: Third postoperative warfarin dose (mg/day)

• Warfarin difference 1: The absolute difference between the 1st and 2nd warfarin doses

• Warfarin difference 2: The absolute difference between the 2nd and 3rd warfarin doses

• Warfarin difference 3: The absolute difference between the 1st and 3rd warfarin doses

• International normalized ratio (INR) 1: First postoperative INR measurement following warfarin administration.

• INR 2: Second postoperative INR measurement following warfarin administration.

• INR 3: Third postoperative INR measurement following warfarin administration.

• INR difference 1: The absolute difference between the 1st and 2nd INR measurements.

• INR difference 2: The absolute difference between the 2nd and 3rd INR measurements.

• INR difference 3: The absolute difference between the 1st and 3rd INR measurements.

• Times 1: The multiplication of Warfarin 1 and INR 1

• Times 2: The multiplication of Warfarin 2 and INR 2

• Times 3: The multiplication of Warfarin 3 and INR 3

• Sex: Patient’s sex.

• Age: Patient’s age at time of admission.

• Indication: Binary indicators for one of the following procedure types that the patient received: cardiac valve replacement, cardiac valve replacement
except percutaneous transluminal approach, coronary artery bypass graft, and others.

• Comorbidities: Binary indicators for the presence of any of the following comorbidities: myocardial infarction (MI), peripheral vascular disorders
(PVD), congestive heart failure (CHF), rheumatic heart disease, diabetes, renal disease, peptic ulcer disease (PUD), HIV, and stroke.

• Medication groups: Binary indicators for the presence of any of the following medication groups: aspirin, clopidogrel, ticagrelor, amiodarone,
fibrates, nonsteroidal anti-inflammatory drugs (NSAIDs), selective serotonin reuptake inhibitor (SSRIs), phenytoin, carbamazepine, fluconazole,
fluoroquinolones, metronidazole, rifampin, and trimethoprim-sulfamethoxazole.

Statistical Models
We compared the performance of 5 different models to predict
the warfarin dose required to attain discharge INRs of 2.0-3.0
and 2.5-3.5. Specifically, we examined penalized linear
regression, k-nearest neighbors (kNN), random forest regression,
gradient boosting, and multivariate adaptive regression splines
(MARS). Penalized linear regression is an extension of ordinary
least squares that includes a regularization constraint in the
model to shrink coefficient values toward zero relative to the
least squares estimates [25,26]. Random forest regression is an
ensemble of independent decision trees created by using random
bootstrap samples of the training observations and random
subsets of the candidate variables in each split of the tree
[27,28]. The final prediction is obtained by calculating the mean
of the predictions from the individual trees comprising the forest.
In contrast to random forest, which is an ensemble of
independent trees, gradient boosting involves the stepwise
construction of many small regression trees from the
pseudoresiduals of previous trees [25,29,30]. MARS is a
nonparametric modeling method that avoids the questionable
linearity assumption of regular linear regression. Specifically,
MARS approximates the nonlinear relationship between
response and predictor variables by fitting the data into
piecewise linear regression functions [31]. kNN regression is a

nonparametric algorithm that makes predictions by averaging
the outcomes of the observations most similar to the target,
weighted by the inverse of their distance [25]. We also
determined the performance of an ensemble model combining
the predictions of the 5 regression models. For each model, we
used grid search to tune hyperparameters, trying multiple
parameter settings over a predefined range of values and
selecting the values of each hyperparameter providing the best
prediction (Table S1 in Multimedia Appendix 1). We also used
cross-validation to estimate model performance and
generalizability with unseen data. In this study, we used 2
distinct cross-validation strategies tailored to the characteristics
of our patient groups. For patients within the target INR range
of 2.0-3.0, we implemented a 10-fold cross-validation approach.
This method divides the data into 10 subsets, or “folds,” and
iteratively uses 9 folds for training and 1 fold for validation,
ensuring comprehensive model assessment while mitigating
overfitting by repeating this process 10 times with different
validation sets. This approach was selected for its balance
between robustness and computational efficiency. Conversely,
for patients with a target INR of 2.5-3.5, who were characterized
by a notably limited data set, we adopted leave-p-out
cross-validation with p=3 to ensure even splits of the 165
observations. Leave-p-out cross-validation is particularly
advantageous in scenarios with limited data, as it systematically
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excludes p data points at a time, creating multiple validation
sets. This approach was crucial because the small size of the
data set made it impractical to create a separate testing set, thus
allowing us to make the most of the available data while
achieving reliable results.

We quantified model performance using the MAE, defined as
the absolute value of the difference between the true and
predicted doses of warfarin required to attain the required
discharge INR. A predicted dose within 1 mg of the predicted
dose is considered a reasonable measure of predictive ability
[32]. We also determined the proportion of predictions within
20% of the true warfarin dose. We selected these measures
because they are commonly used in studies of warfarin dosing
algorithms, thereby allowing us to facilitate a comparison with
past research [13,17,33,34]. In addition, we compared our
findings with clinical algorithms developed by Gage and
colleagues [33] and the International Warfarin Pharmacogenetics
Consortium [34]. We specifically chose these algorithms
because they are among the most externally validated and
clinically assessed algorithms. Moreover, the Gage algorithm
has been operationalized as a freely available web-based
calculator [35] that is commonly used for estimating warfarin
doses in various clinical settings, including heart valve
replacement. Because of the skewed distribution of warfarin
doses, we replicated our analyses using a logarithmic
transformation of the warfarin dose and compared these findings
with those generated by models predicting the untransformed
dose.

Model Creation
Because the intensity of postsurgical anticoagulation required
for a given patient is determined by the nature of cardiac surgery
performed, we developed and validated separate models for
predicting the warfarin dose required for achieving a discharge
INR of 2.0-3.0 in patients undergoing all forms of cardiac
surgery other than mechanical mitral valve replacement (ie,
prosthetic tissue valve replacement, postsurgical atrial
fibrillation, and mechanical aortic valve replacement) and a

discharge INR of 2.5-3.5 in patients receiving a mechanical
mitral valve replacement.

We selected 80% of encounters (n=780) who had initiated
warfarin during their hospital admission and had achieved a
target INR of 2.0-3.0 at the time of discharge as the training
cohort. Following 10-fold cross-validation, model accuracy was
evaluated in the test cohort, comprising the remaining 20%
(n=195) of patients. To ensure we had an adequate number of
patients for model training, we included patients initiating
warfarin for reasons unrelated to cardiac surgery (eg,
thromboembolic disease) in the training cohort. This approach
is similar to that of past studies developing warfarin dosing
algorithms for a specific target INR, with subsequent dosing
tools based on these algorithms incorporating clinical indication
as one of several variables for predicting a warfarin dose
[13,17,33,34]. However, because our primary motivation was
to determine a tool that could guide warfarin dosing specifically
in cardiac surgery patients, our test cohort consisted solely of
cardiac surgery patients, thereby ensuring that the performance
of the final model would be determined with the target study
population. The cardiac surgery patient cohort was defined as
any patient whose service was cardiovascular surgery or patients
with the following procedures: cardiac valve replacement,
cardiac valve repair, or coronary artery bypass graft (Table 1).
The model with the lowest MAE in the test cohort was selected
as the final model for predicting the stable warfarin dose needed
to attain a discharge INR of 2.0-3.0.

Because cardiac surgery patients requiring a target INR of
2.5-3.5 represent those individuals requiring a mechanical mitral
valve replacement, we did not include noncardiac surgery
patients in this data set, resulting in a smaller sample of 165
patients for model training and validation. These 165 patients
all had cardiac valve replacements. Consequently, rather than
partitioning the data into 2 separate training and test sets, we
used leave-p-out cross-validation, where p=3 observations, to
estimate model performance. Figure 1 outlines the study cohort,
data splits, and validation strategies.
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Table 1. Characteristics of encounters initiating warfarin while hospitalized between April 1, 2011, and November 29, 2019.

INR 2.5-3.5INRa 2.0-3.0Characteristics

Training and validation (n=165)Testing (n=195)Training and validation (n=780)

65 (55-75)67 (58.5-76)67 (56-78)Age (years), median (IQR)

98 (59.4)125 (64.1)466 (59.7)Sex (male), n (%)

Procedure, n (%)

165 (100)122 (62.6)156 (20)Cardiac valve replacement

0 (0)18 (9.2)21 (2.7)Cardiac valve repairb

0 (0)40 (20.5)41 (5.3)Coronary artery bypass graft (new onset atrial
fibrillation)

0 (0)15 (7.7)562 (72.1)Otherc

Serviced, n (%)

110 (66.7)195 (100)120 (15.4)Cardiovascular surgery

32 (19.4)0 (0)144 (18.5)Cardiology

12 (7.3)0 (0)59 (7.6)Intensive coronary care

10 (<6.1)0 (0)16 (2.1)Intensive care cardiovascular

10 (<6.1)0 (0)441 (56.5)Othere

Potentially interacting medications, n (%)

105 (63.6)121 (62.1)230 (29.5)Amiodarone

26 (15.8)35 (17.9)164 (21)Fluoroquinolones

16 (9.7)14 (7.2)97 (12.4)Clopidogrel

5 (3)6 (3.1)52 (6.7)Trimethoprim/sulfamethoxazole

6 (3.6)13 (6.7)49 (6.3)Phenytoin

<5 (<3)<5 (<2.6)47 (6)Metronidazole

<5 (<3)<5 (<2.6)16 (2.1)Fluconazole

<5 (<3)0 (0)15 (1.5)Ticagrelor

<5 (<3)<5 (<2.6)7 (0.9)Fibrates

0 (0)<5 (<2.6)6 (0.8)Rifampin

0 (0)0 (0)<5 (<0.6)Carbamazepine

<5 (<3)<5 (<2.6)<5 (<0.6)Aspirin

Comorbidities, n (%)

62 (37.6)59 (30.3)310 (39.7)Congestive heart failure

17 (10.3)16 (8.2)123 (15.8)Stroke

15 (9.1)22 (11.3)121 (15.5)Myocardial infarction

26 (15.8)21 (10.8)95 (12.2)Peripheral vascular disorders

15 (9.1)16 (8.2)134 (17.2)Renal disease

<5 (<3)<5 (<2.6)17 (2.2)Rheumatic heart disease

0 (0)0 (0)25 (3.2)Peptic ulcer disease

<5 (<3)<5 (<2.6)11 (1.4)HIV

46 (27.9)50 (25.6)261 (33.5)Diabetes

Warfarin doses (mg/day), median (IQR)

3 (2.5-5)3 (2.5-5)5 (3-5)First dose

4 (2.5-5)3.5 (2.75-5)5 (3-5)Second dose
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INR 2.5-3.5INRa 2.0-3.0Characteristics

Training and validation (n=165)Testing (n=195)Training and validation (n=780)

4 (2.5-5)3 (2-5)5 (3-5)Third dose

3 (2.5-4)3 (2-5)3.5 (2.5-5)Final warfarin dosef

INR measurements, median (IQR)

1.35 (1.22-1.52)1.3 (1.19-1.52)1.31 (1.18-1.60)INR after first Warfarin dose

1.66 (1.345-2.09)1.6 (1.375-2)1.57 (1.34-2.09)INR after second Warfarin dose

2.06 (1.69-2.6)1.94 (1.62-2.45)1.98 (1.59-2.48)INR after third Warfarin dose

2.85 (2.63-3.12)2.42 (2.2-2.625)2.41 (2.22-2.62)Discharge INR

aINR: international normalized ratio.
bExcludes percutaneous transluminal approach.
cProcedures in the “Other” category are all other procedures and conditions not listed above, including but not limited to pulmonary embolism, heart
failure without coronary angiogram, and ischemic events of the central nervous system.
dPatients who have had a cardiac surgery procedure may not always have “cardiovascular surgery” as their service.
eServices in the “Other” category are all other services not listed above, including orthopedics, intensive care medical, general medicine, vascular
surgery, intensive care trauma, neurosurgery, general surgery acute care, and other hospital services with less than 2% of total patients.
fThe dose required to achieve therapeutic INR at discharge following cardiac surgery.

Figure 1. Model development study design outlining cohort, data splits, and model validation strategies. INR: international normalized ratio. *There
are 109 encounters who are represented in both INR groups of 2.0-3.0 and 2.5-3.5. These were cardiovascular surgery encounters who had a procedure
code "cardiac valve replacement" and had a discharge INR value between 2.5-3.0.

Retrospective Case Series
On September 6, 2021, the algorithm was deployed as a
web-based dosing calculator for predicting the warfarin dose
required to attain a therapeutic INR at the time of discharge
among patients undergoing cardiovascular surgery. To
preliminarily ascertain how the algorithm performed in clinical
practice, we retrospectively determined the proportion of
cardiovascular surgery patients discharged with a therapeutic
INR before (April 2011 and July 2019) and following
(September 2021 and May 2, 2022) the implementation of the
web-based calculator. We also reviewed the charts of patients

with discrepancies between the dose predicted by the algorithm
and the actual discharge warfarin dose and patients who were
not discharged with a therapeutic INR to identify whether
specific patient features (eg, smoking history and BMI) not
included in the development and validation of the algorithm
could be undermining the performance of the web-based
calculator in clinical practice.

Ethical Considerations
This study was approved by the Research Ethics Board of Unity
Health Toronto, Ontario, Canada (reference #16-371). Because
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fully anonymized data were used, the need for informed consent
was waived by the Research Ethics Board.

Results

Algorithm Validation
We identified 1031 encounters initiating warfarin while
hospitalized between April 1, 2011, and November 29, 2019,
who met the inclusion criteria, of whom 334 (32.4%) received
a cardiac valve replacement and 142 (13.8%) underwent other
forms of cardiac surgery. The majority (628/1031, 60.9%) of
patients were male, and the median age was 67 (IQR 56-77)
years (Table 1).

In our analysis predicting the warfarin dose for a discharge INR
of 2.0-3.0, random forest regression was the best performing
model in the test set of cardiac surgery patients, with an MAE
of 1.13 mg and 39.5% of predictions falling within 20% of the
actual dose (Table 2, Figure S1 in Multimedia Appendix 1).

The MAEs for the penalized linear regression, MARS, gradient
boosting, kNN regression, and ensemble models were 1.22 mg,

1.25 mg, 1.15 mg, 1.26 mg, and 1.16 mg, respectively, with the
proportion of predicted doses falling within 20% of the actual
dose ranging from 32.8% to 36.9% (Table 1). Logarithmic
transformation of the warfarin dose did not result in a
better-performing model than random forest regression of the
untransformed dose (Table 2).

For predictions of the warfarin dose required for a discharge
INR of 2.5-3.5, the ensemble model combining the results of
the 5 regression models performed best among patients
undergoing mechanical mitral valve replacement. Specifically,
the MAE for the ensemble model was 1.11 mg, with 43.6% of
predictions being within 20% of the actual dose. The mean
average errors for the penalized linear regression, random forest
regression, MARS, gradient boosting, and kNN regression
models were 1.17 mg, 1.16 mg, 1.30 mg, 1.27 mg, and 1.26 mg,
respectively, with 37.0%-41.2% of predictions being within
20% of the actual dose (Table 3, Figure S2 in Multimedia
Appendix 1). Logarithmic transformation of the warfarin dose
did not improve model performance.

Table 2. Model performance for predicting the warfarin dose for a discharge international normalized ratio (INR) of 2.0-3.0 using validation and testing
data sets.

Correlation coefficient, 95% CIProportion of predictions within
20% of true dose (%), 95% CI

Mean absolute error (MAE; mg),
95% CI

Outcome transforma-
tion

Model

TestValidationTestValidationTestValidation

0.550 (0.466-
0.629)

0.728 (0.688-
0.772)

35.9 (28.7-42.6)46.9 (43.5-50.4)1.22 (1.08-1.37)1.15 (1.07-1.23)NonePenalized regres-
sion

0.548 (0.447-
0.639)

0.720 (0.678-
0.767)

33.3 (26.2-39.5)42.6 (39.0-46.2)1.25 (1.10-1.41)1.20 (1.12-1.29)NoneMARSa

0.462 (0.353-
0.573)

0.569 (0.521-
0.621)

35.4 (28.2-42.0)33.2 (29.7-36.5)1.26 (1.09-1.41)1.50 (1.41-1.59)NonekNNb

0.579 (0.489-
0.672)

0.728 (0.686-
0.773)

39.5 (32.8-46.2)44.5 (40.9-48.1)1.13 (0.99-1.27)1.17 (1.09-1.25)NoneRandom forest
regression

0.596 (0.498-
0.697)

0.690 (0.640-
0.743)

36.9 (29.7-43.6)41.7 (38.2-45.0)1.15 (1.01-1.29)1.25 (1.17-1.34)NoneGradient boosting

0.582 (0.494-
0.665)

0.742 (0.701-
0.786)

32.8 (26.2-39.5)48.2 (44.5-51.5)1.16 (1.02-1.29)1.13 (1.04-1.21)NoneEnsemble model

0.535 (0.440-
0.621)

0.716 (0.673-
0.763)

34.4 (27.7-41.0)43.7 (40.3-47.4)1.21 (1.04-1.35)1.18 (1.09-1.27)LogarithmPenalized regres-
sion

0.568 (0.470-
0.659)

0.732 (0.690-
0.776)

34.9 (28.2-41.5)46.3 (42.9-50.0)1.18 (1.02-1.33)1.14 (1.05-1.22)LogarithmMARS

0.433 (0.326-
0.541)

0.569 (0.519-
0.622)

33.3 (26.7-39.5)32.7 (29.2-35.8)1.34 (1.17-1.50)1.48 (1.38-1.58)LogarithmkNN

0.574 (0.487-
0.665)

0.727 (0.685-
0.774)

34.9 (28.2-41.5)45.3 (41.7-48.7)1.16 (1.01-1.31)1.16 (1.08-1.25)LogarithmRandom forest
regression

0.539 (0.435-
0.641)

0.690 (0.644-
0.740)

32.3 (25.6-39.0)42.6 (39.0-46.0)1.23 (1.07-1.38)1.23 (1.15-1.32)LogarithmGradient boosting

0.578 (0.487-
0.663)

0.750 (0.709-
0.796)

33.8 (27.2-40.0)47.6 (44.0-51.3)1.14 (0.99-1.27)1.12 (1.04-1.19)LogarithmEnsemble model

aMARS: multivariate adaptive regression splines.
bkNN: k-nearest neighbors.
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Table 3. Model performance for predicting the warfarin dose for a discharge international normalized ratio (INR) of 2.5-3.5 using validation data set.

Correlation coefficient,
95% CI

Proportion of predictions
within 20% of true dose (%),
95% CI

Mean absolute error (MAE),
milligrams, 95% CI

Outcome transformationModel

0.502 (0.401-0.615)41.2 (33.9-48.5)1.17 (1.00-1.33)NonePenalized Regression

0.373 (0.228-0.554)38.8 (30.9-46.1)1.30 (1.13-1.47)NoneMARSa

0.339 (0.194-0.481)38.2 (30.9-44.8)1.26 (1.08-1.44)NonekNNb

0.519 (0.408-0.642)38.8 (31.5-46.7)1.16 (0.99-1.33)NoneRandom Forest Regression

0.338 (0.209-0.469)37.0 (29.7-44.2)1.27 (1.07-1.46)NoneGradient boosting

0.545 (0.442-0.660)43.6 (35.8-50.9)1.11 (0.94-1.27)NoneEnsemble Model

0.525 (0.419-0.641)43.0 (35.2-50.3)1.12 (0.94-1.29)LogarithmPenalized Regression

0.497 (0.372-0.650)44.2 (35.8-51.5)1.18 (0.99-1.35)LogarithmMARS

0.359 (0.244-0.472)40.0 (32.1-47.3)1.23 (1.03-1.42)LogarithmKNN

0.464 (0.352-0.581)42.4 (34.5-49.7)1.19 (1.00-1.37)LogarithmRandom Forest Regression

0.361 (0.240-0.487)38.2 (30.9-44.8)1.30 (1.10-1.50)LogarithmGradient boosting

0.507 (0.395-0.635)41.2 (33.3-48.5)1.16 (0.98-1.33)LogarithmEnsemble Model

aMARS: multivariate adaptive regression splines.
bkNN: k-nearest neighbors.

Retrospective Case Series
The uptake of the warfarin dosing tool is illustrated in Figure
2.

Because of COVID-19–associated reductions in surgical
volumes at our institution, we identified only 18 warfarin-naïve
patients who underwent cardiovascular surgery and were
discharged on warfarin between September 2021 and May 2,
2022. Overall, 61.1% (11/18) of these patients were discharged
with a therapeutic INR with a warfarin dose within the range
predicted by the algorithm (Figure 3). In contrast, 47.5%
(305/641) cardiovascular surgery patients were discharged with
a therapeutic INR before the development and implementation
of the web-based calculator (April 2011 to July 2019; P=.37
for pre- and postcomparison).

In a review of 7 patients with discrepancies between the
predicted and actual discharge warfarin dose, a total of 2 patients
were discharged with a therapeutic INR but with discharge doses
lower than those predicted by the algorithm. Another 3 patients
were not discharged with a therapeutic INR using the dose
predicted by the algorithm. Of these patients, 2 were discharged
with INRs that were nearly therapeutic (1.90 and 1.93; target
INR 2.0-3.0), and 1 was discharged with an INR of 1.65 and
therapeutic bridging with a low molecular weight heparin. The
final 2 patients were not discharged with a therapeutic INR and
were discharged with warfarin doses that differed from those
predicted by the algorithm. A review of patient charts did not
identify any factors that could account for discrepancies between
actual and predicted discharge doses.

Figure 2. Warfarin dosing tool usage by St Michael’s Hospital cardiac surgery service, September 6, 2021, to September 18, 2023. INR: international
normalized ratio.
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Figure 3. Predicted and true discharge warfarin doses for patients in the retrospective case series with indicators for whether their discharge international
normalized ratio (INR) was therapeutic.

Discussion

In this study, we found that machine learning models trained
on readily available demographic and clinical data could predict
the warfarin dose needed to discharge cardiac surgery patients
with a therapeutic INR. Overall, random forest regression and
ensemble models performed best for patients requiring discharge
INRs of 2.0-3.0 and 2.5-3.5, respectively, with approximately
40% of predictions being within 20% of the actual dose. Based
on our findings, a web-based tool was developed and deployed
to the cardiovascular surgery unit of the hospital to facilitate
warfarin dosing in the postoperative period. A preliminary
evaluation found a numerically higher proportion of patients
discharged with a therapeutic INR using the warfarin discharge
dose predicted by the algorithm relative to historical controls.
However, this evaluation was based on a small sample of
patients, with additional evaluations being required.

Our findings are consistent with previous studies demonstrating
the use of machine learning approaches for supporting
personalized warfarin dosing in cardiac surgery patients. This
is important because of the heightened sensitivity to warfarin
in cardiac surgery patients during the postoperative period,
thereby increasing the risk of bleeding and death or prolonging
the length-of-stay because of delayed epicardial pacer wire
removal [7,8,36,37]. Moreover, warfarin remains the only
anticoagulant indicated for patients with mechanical mitral heart
valves and remains commonly used following other forms of
cardiac surgery [21-24,38]. In addition, our predictive algorithms
were derived using clinical information that is routinely
collected during the care of cardiac surgery patients. In contrast,
some previous studies have integrated pharmacogenetic
information accounting for up to 40% of individual variation
in warfarin dosing with clinical data when developing and

validating warfarin dosing algorithms [13,16,18,19,39].
Although a combination approach may improve model
performance, these gains may be offset by the resources
associated with obtaining pharmacogenetic data in all patients
and the lack of availability of this information in most settings.
Moreover, meta-analyses of randomized controlled trials
comparing genotype-guided and clinical dosing algorithms have
found inconsistent results with respect to time in the therapeutic
range and bleeding risk, with no difference in mortality or
thromboembolism risk [40,41]. However, the time to attain a
therapeutic INR may be shortened by genotype-guided
approaches [41]. Further, while cross-study comparisons are
challenging, the MAEs for our best-performing models were
similar to those of other studies incorporating pharmacogenetic
data, with similar proportions of predictions falling within 20%
of the true value. Specifically, the median MAEs of warfarin
dosing algorithms were 1.20 (95% CI 0.37-3.70) [17] and
1.47-10.86 [13] in separate systematic reviews. Although this
is higher than the MAE derived using a BPNN (0.740 mg) [14],
our sample size limited us from exploring the performance of
more advanced models. In addition, the median proportion of
patients with the predicted dose within 20% of the true value
was 48% from 14 studies describing the development of
algorithms using clinical data only [17]. Our findings are also
consistent with those of the Gage and International Warfarin
Pharmacogenetics Consortium clinical algorithms, with a median
and MAE of 1.50 and 1.41 mg/day, respectively [33,34].

Several limitations of this study merit emphasis. First, our
sample size was small, potentially limiting the ability of models
to recognize patterns and make predictions. However, this
reflects our stringent inclusion criteria and emphasis on
developing a warfarin dosing algorithm for a specific patient
population. Moreover, we used expert knowledge and past
research to select a parsimonious number of features for our
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predictive models. Further, our best-performing models had
MAEs of approximately 1.1 mg, which is only slightly higher
than the value of 1 mg considered to represent reasonable
predictive ability [32]. Second, we lacked information on some
variables known to affect warfarin sensitivity, such as smoking
[42], ethnicity [43], and herbal medications [44]. Third, our
case series examining the impact of our algorithms on clinical
outcomes comprised a small number of patients because of
COVID-19–associated reductions in surgical volumes. We were
therefore likely underpowered to detect statistically significant
differences in the proportion of patients discharged with a
therapeutic INR following the implementation of the tool.

Finally, we did not evaluate deep learning methods for algorithm
development. However, we chose to avoid these methods
because of the small number of observations in our data sets
[14,15].

In conclusion, we found that a random forest regression and
ensemble model based on routinely available clinical data
provided accurate predictions to guide initial warfarin dosing
in cardiac surgery patients requiring discharge INRs of 2.0-3.0
and 2.5-3.5, respectively. These algorithms can be harnessed
to provide personalized warfarin dosing and optimize the
postsurgical anticoagulation of these patients.
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