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Abstract

Background: Stroke has multiple modifiable and nonmodifiable risk factors and represents a leading cause of death globally.
Understanding the complex interplay of stroke risk factors is thus not only a scientific necessity but a critical step toward improving
global health outcomes.

Objective: We aim to assess the performance of explainable machine learning models in predicting stroke risk factors using
real-world cohort data by comparing explainable machine learning models with conventional statistical methods.

Methods: This retrospective cohort included high-risk patients from Ramathibodi Hospital in Thailand between January 2010
and December 2020. We compared the performance and explainability of logistic regression (LR), Cox proportional hazard,
Bayesian network (BN), tree-augmented Naïve Bayes (TAN), extreme gradient boosting (XGBoost), and explainable boosting
machine (EBM) models. We used multiple imputation by chained equations for missing data and discretized continuous variables
as needed. Models were evaluated using C-statistics and F1-scores.

Results: Out of 275,247 high-risk patients, 9659 (3.5%) experienced a stroke. XGBoost demonstrated the highest performance
with a C-statistic of 0.89 and an F1-score of 0.80 followed by EBM and TAN with C-statistics of 0.87 and 0.83, respectively; LR
and BN had similar C-statistics of 0.80. Significant factors associated with stroke included atrial fibrillation (AF), hypertension
(HT), antiplatelets, HDL, and age. AF, HT, and antihypertensive medication were common significant factors across most models,
with AF being the strongest factor in LR, XGBoost, BN, and TAN models.

Conclusions: Our study developed stroke prediction models to identify crucial predictive factors such as AF, HT, or systolic
blood pressure or antihypertensive medication, anticoagulant medication, HDL, age, and statin use in high-risk patients. The
explainable XGBoost was the best model in predicting stroke risk, followed by EBM.
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Introduction

Cardiovascular disease, especially stroke, is a major cause of
death globally. Many risk factors for stroke include
nonmodifiable (eg, ethnicity, age, and sex) and modifiable risk
factors (eg, hypertension [HT], diabetes mellitus [DM],
dyslipidemia [DLP], smoking, and alcohol consumption) [1].
Improved understanding of disease prediction and risk
stratification are active epidemiological research areas to help
clinicians target preventive treatment to those most likely to
benefit.

The American Heart Association or American Stroke
Association defines ischemic and hemorrhagic stroke [2].
Ischemic stroke is defined as an episode of neurological
dysfunction caused by focal cerebral, spinal, or retinal infarction.
A hemorrhagic stroke is characterized by an intracerebral
hemorrhage, which involves bleeding within the brain tissue
(parenchyma) or ventricular system. This condition, which is
not caused by trauma, encompasses instances of spontaneous
parenchymal hemorrhages or those occurring following a brain
infarction. The rapid development of neurological dysfunction
symptoms is a defining consequence of this internal bleeding.

There are 2 common sources of ischemic stroke: atherosclerotic
stroke and cerebral embolism [3], with the former being more
common. Atherosclerosis within a significant cerebral blood
vessel can vary in severity from small changes in diameter to
severe stenosis that can cause clotting at the site of the
atherosclerotic plaque leading to blood flow obstruction, causing
a stroke [4]. While a cerebral embolism can originate from other
regions of the body, sometimes as a consequence of atrial
fibrillation (AF), the emboli travel and obstruct the distal
cerebral arteries preventing brain tissue perfusion leading to
ischemia.

There are multiple risk factors for stroke given the various
pathological pathways involved [5]. The Framingham Stroke
Risk Profile is a composite vascular risk score that predicts
10-year stroke risk based on 8 risk factors, that is, age, systolic
blood pressure (SBP), antihypertensive therapy, DM, cigarette
smoking, cardiovascular disease, AF, and left ventricular
hypertrophy [6]. The INTERSTROKE consortia identified 10
modifiable risk factors associated with 90% of the stroke
population-attributable risk [7,8]. HT is regarded as the most
important modifiable risk factor for hemorrhagic stroke, while
recent smoking, DM, apolipoproteins, and cardiac causes are
more critical factors associated with ischemic stroke.

Risk or prognostic prediction models of stroke have been
developed using conventional statistical methods (such as
multiple logistic regression [LR] or Cox proportion hazard
[CPH] models) based on linear relationships with the outcome
measure, allowing for 2-way interactions between risk factors
[5,6,9-11]. In reality, the interaction between risk factors may
be more complex, of a higher order, or nonlinear. Machine
learning (ML) models free from prior hypotheses have been
recently used for disease prediction given their ability to better
consider the interactions present, including nonlinear
relationships [12]. However, the causal inference of these
methods remains questionable, in particular, whether these ML

models actually reflect the underlying relevant biology or simply
improve prognostic performance.

Many ML models (eg, decision tree, tree ensembles, support
vector machines, and neural networks) and deep learning
approaches have been compared to conventional statistical
models to assess their ability to detect nonlinear associations
and multifaceted interactions [13-17]. Deep learning models
are composed of multiple hidden layers that include millions
of parameters without clear mechanistic meaning, representing
“black-box” models with little transparency [18,19]. To address
this shortcoming, explainable ML approaches have become
popular by improving features such as understandability,
comprehensibility, interpretability, explainability, and
transparency [18]. Explainable models include Bayesian network
(BN) and tree-augmented Naïve Bayes (TAN) models, both of
which are probabilistic graphical models [20]. An explainable
boosting machine (EBM) is based on a generalized additive
model and is considered a ”glass-box” model given its improved
transparency and interpretability [21]. These models excel in
capturing complex relationships and dependencies among
features, providing a more comprehensive understanding of the
data structure and interplay between different risk factors when
compared with the traditional statistical LR model. Furthermore,
extreme gradient boosting (XGBoost) is considered a
state-of-the-art approach for evaluating tabular data [22].

Therefore, this study used real-world cohort data and explainable
ML models to identify risk factors for stroke occurrence in
high-risk patients. The importance and ranking of risk factors
were used as a proxy for explainability.

Methods

Study Design
This study is a retrospective cohort analysis of high-risk patients
with stroke treated at Ramathibodi Hospital in Bangkok,
Thailand, from January 2010 to December 2020. The study
included patients aged 18 years or older with at least 1 diagnosis
of HT, AF, DM, or DLP. Participants were excluded if they had
a prior stroke at the initial hospital visit or had only 1 visit during
the study period.

The patient cohort was identified from Ramathibodi Hospital's
electronic database using the International Classification of
Diseases, 10th Revision (ICD-10) codes for risk factors and
clinical features, such as HT (I10-I16), DM (E08-E13), AF
(I48), and DLP (E78). The primary end points of interest were
the development of ischemic stroke (I63) and hemorrhagic
stroke (I61), as indicated by their respective ICD-10 codes. The
features and criteria used in this study can be found in
Multimedia Appendix 1.

Predictive Features and Outcome
Each patient was followed up until stroke occurrence, loss to
follow-up, or censoring at study end (December 31, 2020). The
latter 2 events were censored on their final visit or study end
date, respectively.

Baseline study predictive features included age, sex, AF, HT,
DM, DLP, SBP, plasma glucose (PG), serum creatinine, BMI,
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low-density lipoprotein and high-density lipoprotein (HDL),
triglyceride level, and medications (antihypertensives,
antiplatelets, oral hypoglycemics and insulin, statin and nonstatin
lipid-lowering drugs, and anticoagulants). These baseline
features were identified and retrieved when patients were first
identified in our electronic medical records. The missing data
in this study, assumed to be missing at random, were filled in
using multiple imputation by chained equations via scikit-learn’s
IterativeImputer [23,24]. The percentage of missing data and
features used in multiple imputation by chained equations for
each imputed variable are detailed in Table S1-S3 in Multimedia
Appendix 1. Continuous data were categorized on the basis of
previous literature to improve interpretation and as a requirement
of the BN model [25]. Details of discretization are provided in
Table S4 in Multimedia Appendix 1. We randomly separated
the data by hospital numbers into development and test sets
with a ratio of 80:20; each patient appeared in only 1 data set
to maintain independence between the data sets. Characteristics
of patients between the 2 data sets are comparable, see Table
S5 in Multimedia Appendix 1.

Model Construction
We compared model performance and explainability between
LR, CPH, BN, TAN, XGBoost, and EBM. We normalized
continuous variables and used recursive feature elimination to
select features in the LR model, whereas feature selection in
XGBoost and EBM included self-selecting features during node
splitting [26]. We manually selected features in the BN and
TAN based on stroke pathophysiology and considered the
appropriate network structure.

Scikit-learn served as the ML library for LR and XGBoost, with
hyperparameter tuning using grid and random searches with
successive halving (HalvingGridSearchCV and
HalvingRandomSearchCV) and assigned imbalance ratio as
weights to counter imbalanced class effects. We extracted LR
coefficients and XGBoost’s features’ importance together with
Shapley Additive Explanations (SHAP) to represent their
explainability [27]. We constructed EBM using the open-source

package InterpretML (Microsoft) [21]. Variable and interaction
effects were plotted to determine their impact on the outcome.

We built a BN using GeNIe Modeler (BayesFusion, LLC)
software based on the known causal pathways of disease [28]
and trained it using discretized data. TAN structures were also
determined using the training data and GeNIe (BayesFusion,
LLC) software. The architectural details of the BN and TAN
are shown in Multimedia Appendix 2. Models were evaluated
with C-statistics and F1-scores. C-statistics, or area under
receiver operating characteristics curve (AUC-ROC), provide
a measure of a models’ability to accurately distinguish between
positive and negative classes (0.5 being no predictive ability
beyond chance and 1 being perfect prediction), while the
F1-score represents a measurement of the balance between
precision and recall in binary classification, which computes
by harmonic mean between precision and recall.

Ethical Considerations
The data were anonymized to ensure confidentiality and privacy
protection. This study was approved by Human Research Ethics
Committee, Faculty of Medicine Ramathibodi Hospital, Mahidol
University (COA. MURA2021/255). The committee waived
the need to obtain consent for the collection, analysis, and
publication of the retrospectively obtained and anonymized data
for this noninterventional study.

Results

A total of 275,247 high-risk patients were included in this
cohort, of whom 9659 (3.5%) experienced a stroke. Specifically,
7874 patients had an ischemic stroke, and 2427 patients had a
hemorrhagic stroke. The patient cohort included 19,324 (7%)
patients with AF, 98,836 (36%) with DM, 228,055 (83%) with
DLP, and 211,430 (77%) with HT. Table 1 presents the baseline
characteristics, revealing significant differences between the
stroke and nonstroke groups for almost all variables, except for
DLP (P=.70). The data set was divided into development and
validation sets, comprising 220,198 and 55,049 patients,
respectively.
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Table 1. Cohort summary statistics.

P valueNonstroke (N=265,588)Stroke (N=9659)

<.00158 (14.1)64.7 (13)Age (years), mean (SD)

<.001Sex

101,700 (0.95)5107 (0.05)Male, n (%)

168,440 (0.97)4552 (0.03)Female, n (%)

Medication, n (%)

<.001Antihypertensive medication

141,188 (0.97)4096 (0.03)Yes

124,400 (0.96)5563 (0.04)No

<.001Hypoglycemic medication

59,150 (0.97)1659 (0.03)Yes

206,438 (0.96)8000 (0.04)No

<.001Lipid-lowering medication (nonstatin)

38,580 (0.98)913 (0.02)Yes

227,008 (0.96)8746 (0.04)No

<.001Statin medication

126,508 (0.97)3369 (0.03)Yes

145,370 (0.96)6290 (0.04)No

<.001Antiplatelet medication

54,992 (0.95)2868 (0.05)Yes

217,387 (0.97)6791 (0.03)No

<.001Anticoagulant medication

10,015 (0.94)622 (0.06)Yes

255,573 (0.97)9037 (0.03)No

Vital signs, mean (SD)

<.001133.6 (20.9)138 (22.7)Systolic blood pressure (mm Hg)

.00278 (10)77.5 (11.1)Diastolic blood pressure (mm Hg)

<.00125.5 (4.8)25.2 (4.4)BMI (kg/m2)

Risk factors, n (%)

<.001Atrial fibrillation

16,733 (0.87)2591 (0.13)Present

248,855 (0.98)7068 (0.02)Absent

.70Dyslipidemia

220,038 (0.96)8017 (0.04)Present

45,550 (0.97)1642 (0.03)Absent

<.001Hypertension

202,494 (0.96)8936 (0.04)Present

63,094 (0.99)723 (0.01)Absent

<.001Diabetes mellitus

94,634 (0.96)4202 (0.04)Present

170,954 (0.97)5457 (0.03)Absent

Laboratory values, mean (SD)

.0011.14 (1.7)1.2 (1.4)Plasma creatinine (mg/dL)
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P valueNonstroke (N=265,588)Stroke (N=9659)

<.001111.6 (46)128.3 (64.2)Blood sugar (mg/dL)

<.0016.4 (1.5)6.7 (1.7)Hemoglobin A1c (%)

<.001128.3 (41.1)119.9 (43.2)Low-density lipoprotein (LDL) (mg/dL)

<.00150.9 (14)45.7 (13.5)High-density lipoprotein (HDL) (mg/dL)

<.001136.1 (94.8)142 (96.7)Triglyceride (md/dL)

In terms of discriminative performance, the XGBoost model
yielded the highest C-statistic (0.89, 95% CI 0.88-0.90) and
F1-score (0.80), followed by EBM and TAN with C-statistics

of 0.87 (95% CI 0.86-0.87) and 0.83 (95% CI 0.82-0.83),
respectively. LR and BN models demonstrated similar
performances, with C-statistics of 0.80 (95% CI 0.79-0.81).
These results are presented in Table 2.

Table 2. Model performance of stroke risk prediction over a 10-year period.

F1-scoreC-statistics (95% CI)Model

0.730.80 (0.79-0.81)Logistic regression

0.730.80 (0.79-0.81)Bayesian network

0.780.87 (0.86-0.87)Explainable boosting machine

0.800.89 (0.88-0.90)XGBoosta

0.730.83 (0.82-0.83)Tree-augmented Naïve Bayes

aXGBoost: extreme gradient boosting.

The LR model identified several factors significantly associated
with stroke including AF (odds ratio [OR] 5.93, 95% CI
5.86-5.99), HT (OR 5.14, 95% CI 5.1-5.18), antihypertensive
medication (OR 0.3, 95% CI 0.24-0.35), antiplatelets (OR 3.01,
95% CI 2.96-3.07), HDL (OR 0.76, 95% CI 0.74-0.78), and
age (OR 1.31, 95% CI 1.29-1.33) as shown in Table 3. Based
on feature importance ranking and SHAP values, the XGBoost
model identified AF, SBP, HDL, PG, antihypertensive
medication, HT, and antiplatelets as significant factors
associated with stroke occurrence (Figure S1 in Multimedia
Appendix 3). The EBM model identified PG, antihypertensive

medication, SBP, HDL, HT, and AF as significant features,
with interaction terms providing no additional predictive power
(Multimedia Appendix 4). For the BN and TAN models,
advanced age (>75 years) combined with AF were the strongest
factors. Overall, AF, HT, and antihypertensive medication
emerged as common significant factors across most models.
Notably, AF was the strongest factor in the LR, XGBoost, BN,
and TAN models. Receiver operating characteristic and
precision-recall curves of each model are provided in
Multimedia Appendix 5.
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Table 3. Odds ratio (OR) of variables from multivariate logistic regression model.

OR (95% CI)

Categorical variable

5.93 (5.86-5.99)AFa

5.14 (5.1-5.18)HTb

0.3 (0.24-0.35)antiHTc

3.01 (2.96-3.07)antiPLd

0.51 (0.43-0.6)antiDMe

1.86 (1.78-1.93)DLPf

0.61 (0.56-0.67)Statin

0.67 (0.59-0.75)antiDLPg

0.68 (0.58-0.79)antiCoagh

1.4 (1.36-1.44)isMalei

1.31 (1.25-1.36)DMj

Continuous variable

0.76 (0.74-0.78)HDLk (mg/dL)

1.31 (1.29-1.33)Age (years)

1.31 (1.29-1.32)PGl (mg/dL)

0.89 (0.87-0.91)Crm (mg/dL)

1.11 (1.09-1.13)SBPn (mmHg)

0.94 (0.92-0.96)BMIcalco (kg/m2)

1.04 (1.02-1.07)LDLp (mg/dL)

0.97 (0.95-0.99)TGq (mg/dL)

aAF: atrial fibrillation.
bHT: hypertension.
cantiHT: antihypertensive medication.
dantiPL: antiplatelet medication.
eantiDM: hypoglycemic medication.
fDLP: dyslipidemia.
gantiDLP: nonstatin lipid-lowering medication.
hantiCoag: anticoagulant medication.
iisMale: male.
jDM: diabetes mellitus.
kHDL: high-density lipoprotein.
lPG: plasma glucose.
mCr: serum creatinine.
nSBP: systolic blood pressure.
oBMIcalc: body mass index.
pLDL: low-density lipoprotein.
qTG: triglycerides.
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Discussion

Principal Findings
We investigated a retrospective cohort of patients at high risk
of developing stroke to develop prediction models for stroke
occurrence. The models identified AF, HT, or SBP or
antihypertensive medication, anticoagulant medication, HDL,
age, and statin use as important features in predicting stroke
using both conventional LR and ML models. Our findings
provide robust, transparent, and explainable ML models for
stroke risk prediction using routinely collected clinical data
accessible in general health care settings.

Explainability
Explainability and transparency of risk prediction models are
important for facilitating the prescribing of individualized
treatments (precision medicine) in real-world clinical settings
[29]. Improved patient understanding also leads to empowerment
and improved medication or treatment adherence [30]. Improved
understanding and use of ML models in both prehoc and post
hoc analyses are growing. According to Arrieta et al [18], LR,
CPH, BN, TAN, and EBM models are considered transparent
and understandable in themselves, while XGBoost requires post
hoc analysis to improve explainability, including local
interpretable model-agnostic explanations [31], SHAP, partial
dependence plots, feature importance [32], or DeepLIFT
[17,18,33]. Explainability can be classified into 3 types:
application-grounded, human-grounded, and
functionality-grounded [34]. Application- and human-grounded
categories involve human interpretability, that is, models that
are easily comprehensible to a layperson, without the need for
specialized technical knowledge or expertise; functionality
grounded refers to the methods or algorithms used and their
quantitative evaluation.

Some studies have explored the benefits of white-box ML
prediction models, such as BN and EBM. For example, Park et
al [35] used BN with a TAN algorithm to predict 3-month
functional outcomes after stroke with an AUC-ROC of 0.889.
Kanwar et al [36] used a BN-derived risk prediction model that
improved the prediction of 1-year survival in patients with
pulmonary arterial HT compared to the Kaplan-Meier method
in REVEAL (version 2.0), with an AUC-ROC of 0.8 versus
0.76 [37,38]. Lou et al [39] showed that EBM approaches could
achieve accuracy close to that provided by random forest models
while providing good interpretability. White-box EBM
approaches are also known as “glass-box” models that allow
for interaction terms between variables within the model. All
of these models performed well, and their white-box nature
enables transparency, making them useful for clinicians to
explain and translate medical knowledge for a more confident
application in clinical settings. A previous study compared
multiple ML models to predict stroke and address the class
imbalance problem using a multilayer perceptron classifier to
achieve the lowest false-negative rate (18.60%) and SHAP to
investigate the impact of risk factors on stroke prediction [40].
However, this approach was considered a post hoc analysis and
not representative of a white-box model.

To date, investigation of the predictive capabilities of multiple
explainable models in the context of stroke risk assessment
using real-world data has been limited. Our study addresses this
knowledge gap through a novel approach that compares the
performance metrics for several explainable models, resulting
in significantly improved predictive accuracy, further informing
the existing literature. ML models generally outperform
traditional statistical methods, supported by AUC-ROCs that
represent sufficient improvement to be clinically actionable,
that is, AUC-ROCs over 0.80-0.85. This does not mean that all
ML methods are superior to traditional statistical methods in
all applications, and users should keep an open mind. Another
benefit of transparent and explainable models is the rational
and selective approach to the choice of predictors. Data mining
methods used without regard to causative pathways can include
variables that cause collider bias and reduce model performance
or may lead to embedded bias within the observational data.

We seek to further contextualize our study findings in relation
to the existing literature while also acknowledging the unique
characteristics of our study population. The significant features
we identified as contributing to stroke risks, such as AF and
HT, have been extensively reported previously, providing
validation of our findings [41]. However, it is important to note
that our study offers additional insight into the strength and
interaction of these risk factors to improve our understanding
of stroke risk. They also show the potential to improve model
performance over traditional approaches even when starting
with an identical data set.

The integration of these models into clinical workflows could
provide real-time, personalized risk assessments, guiding
clinicians toward more targeted and effective interventions. For
instance, a patient identified as high risk could be prioritized
for aggressive preventive measures, such as rigorous lifestyle
modification, counseling, or intensified medication regimens.
Conversely, if a patient is predicted to have a lower stroke risk,
they may avoid unnecessary treatments and potential side
effects, or they might require less intensive follow-up within
the hospital setting. This individualized approach would enhance
the personalization of stroke prevention strategies, potentially
improving patient outcomes.

In addition, the interpretability of the models used helps health
care professionals to better understand the key drivers of the
predicted stroke risk. This transparency could facilitate more
informed and confident decision-making, bridging the gap
between complex ML algorithms and their practical application
in a clinical setting. Ultimately, these advances could lead to
more efficient and effective personalized health care,
underpinned by evidence-based, data-driven decisions.

Limitations
There were several limitations to our study. First, other
important epidemiological factors, such as smoking status,
education, and alcohol consumption, were not included within
our risk prediction models as the information was not recorded
in the electronic medical records. Many variables rely on the
accuracy of ICD-10 coding, which may be subject to miscoding
or misdiagnosis that would reduce model performance. Our
study cohort encompassed a somewhat narrow demographic
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range of an “at-risk” population. We recognize that stroke risk
factors may vary across different populations, highlighting the
need for externally validating our stroke prediction model in
the future before wider application.

Conclusions
Our study demonstrates predictive accuracy and explainability
for stroke risk prediction models in high-risk patients. The key
findings highlight the impact of AF, HT, and blood pressure
control as significant risk factors for stroke emphasizing the
potential benefits of screening and early detection, especially
within patients for whom these risk factors are prominent.
Furthermore, our findings confirm the robustness and
interpretability of ML models such as XGBoost, EBM, and BN
in handling complex, real-world health data and the potential

to improve model performance even when starting with the
same data set as traditional approaches.

Looking ahead, we anticipate significant opportunities for
further research using these approaches. The continued evolution
of ML techniques provides an avenue for refining prediction
models, possibly by incorporating additional or alternative
feature sets. Moreover, future studies could explore the effects
of different interventions on stroke risk, such as lifestyle
modifications or novel therapeutic agents. In doing so, our
understanding of stroke prevention and management may be
enhanced, potentially improving patient outcomes. By pushing
the boundaries of explainable ML in health care, these findings
hold the potential to revolutionize clinical practice, empowering
physicians and patients with clear, actionable insights for better
health outcomes.
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SHAP: Shapley Additive Explanations
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XGBoost: extreme gradient boosting
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