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Abstract

Background: Hospitalizations account for almost one-third of the US $4.1 trillion health care cost in the United States. A
substantial portion of these hospitalizations are attributed to readmissions, which led to the establishment of the Hospital
Readmissions Reduction Program (HRRP) in 2012. The HRRP reduces payments to hospitals with excess readmissions. In 2018,
>US $700 million was withheld; this is expected to exceed US $1 billion by 2022. More importantly, there is nothing more
physically and emotionally taxing for readmitted patients and demoralizing for hospital physicians, nurses, and administrators.
Given this high uncertainty of proper home recovery, intelligent monitoring is needed to predict the outcome of discharged patients
to reduce readmissions. Physical activity (PA) is one of the major determinants for overall clinical outcomes in diabetes,
hypertension, hyperlipidemia, heart failure, cancer, and mental health issues. These are the exact comorbidities that increase
readmission rates, underlining the importance of PA in assessing the recovery of patients by quantitative measurement beyond
the questionnaire and survey methods.

Objective: This study aims to develop a remote, low-cost, and cloud-based machine learning (ML) platform to enable the
precision health monitoring of PA, which may fundamentally alter the delivery of home health care. To validate this technology,
we conducted a clinical trial to test the ability of our platform to predict clinical outcomes in discharged patients.

Methods: Our platform consists of a wearable device, which includes an accelerometer and a Bluetooth sensor, and an iPhone
connected to our cloud-based ML interface to analyze PA remotely and predict clinical outcomes. This system was deployed at
a skilled nursing facility where we collected >17,000 person-day data points over 2 years, generating a solid training database.
We used these data to train our extreme gradient boosting (XGBoost)–based ML environment to conduct a clinical trial, Activity
Assessment of Patients Discharged from Hospital-I, to test the hypothesis that a comprehensive profile of PA would predict
clinical outcome. We developed an advanced data-driven analytic platform that predicts the clinical outcome based on accurate
measurements of PA. Artificial intelligence or an ML algorithm was used to analyze the data to predict short-term health outcome.

Results: We enrolled 52 patients discharged from Stanford Hospital. Our data demonstrated a robust predictive system to
forecast health outcome in the enrolled patients based on their PA data. We achieved precise prediction of the patients’ clinical
outcomes with a sensitivity of 87%, a specificity of 79%, and an accuracy of 85%.

Conclusions: To date, there are no reliable clinical data, using a wearable device, regarding monitoring discharged patients to
predict their recovery. We conducted a clinical trial to assess outcome data rigorously to be used reliably for remote home care
by patients, health care professionals, and caretakers.
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Introduction

Background
Why are some discharged patients readmitted whereas others
are not? Although often routine and uncomplicated, this
transition of care is complex and, if not arranged properly, can
lead to life-threatening consequences. Clearly, factors such as
disease severity and the intensity of postdischarge care affect
the risk of readmission; however, many other issues may also
have substantial contributions [1]. The top contributory factors
are (1) admission diagnosis: heart failure is the top cause of
readmission, whereas other conditions, including sepsis,
pneumonia, chronic obstructive pulmonary disease, and cardiac
arrhythmia, are considered high risk; (2) insurance: Medicare
and Medicaid patients have the highest rates of readmission;
(3) patient demographics: race, sex, age, and income play a key
role (eg, women who experience heart attacks and populations
with lower-income status); and (4) patient engagement: patients
who lack knowledge, skills, and confidence to manage their
care have nearly double the average readmission rate [2,3].

The hospital readmission rate is approximately 20% in the
United States, and the rates increase proportionately among
those who are aged ≥50 years [4]. Our health care infrastructure
is overburdened. Therefore, it is incumbent upon health care
providers to develop risk stratification algorithms expeditiously
to help predict which patients are at the highest risk for
readmission. However, this determination is extremely difficult
to make, particularly because the majority of the discharged
patients will not become critically ill, require readmission, or
die. Therefore, as we try to mitigate the risks of readmission,
we need to do more than just predict the risk of readmission;
we need to also tailor our home monitoring strategies to this
risk [1]. Furthermore, this monitoring must not overwhelm
health care providers or patients; rather, the aim should be to
deliver smart, robust, and intelligent monitoring of patients
convalescing at home.

Physical activity (PA) is one of the major determinants for
overall clinical outcomes in chronic diseases, including diabetes,
hypertension, hyperlipidemia, heart failure, and cancer, as well
as mental health issues [5-8]. Moreover, these same
comorbidities increase the risk of readmission. In 2017, the
Centers for Disease Control and Prevention advocated adding
PA as the fourth vital sign after heart rate (HR), blood pressure,
and body temperature [9]. These developments underline the
critical importance of PA in assessing the recovery of patients
and, more importantly, indicate a clear need to measure PA
quantitatively beyond the current questionnaire and survey
methods [4,9,10]. PA is defined simply as any bodily movement
produced by the skeletal muscles that result in energy
expenditure [11]. However, it has been difficult historically to
directly measure PA. It requires a dedicated laboratory to
measure and perform a kinematic analysis. In addition, the
measurement period is short and hard to monitor over time.

Wearable technology and wireless data transmission have
overcome these limitations and facilitate an accessible and
long-term assessment of PA. A triaxial movement sensor was
found to be a reliable, valid, and stable measurement of walking
and daily PA in patients with chronic obstructive pulmonary
disease [7]. Furthermore, a portable system for PA assessment
in a home environment has been proposed [5]. These innovative
systems provide novel and comprehensive real-time data for
the evaluation of the health and quality of life of participants
with limited mobility and chronic diseases. Finally, an estimate
of step counts and energy expenditure strongly correlated with
observed step counts and measured energy expenditure, using
hip- and wrist-based Fitbit devices [6].

Development of an Advanced Data-Driven Analytic
Platform
We developed an advanced data-driven analytic platform that
predicts clinical outcomes based on accurate measurements of
PA [10]. Artificial intelligence (AI) or machine learning (ML)
analyzes the data to predict short- and long-term health
outcomes. Although there is an overabundance of wearable
devices (WDs) in the market, there are no known clinical
outcome data that could be used reliably for home care by
patients, health care professionals, or caretakers. In conjunction
with AiCare Corp in San Jose, California, United States, we
developed a platform consisting of the following key
components: (1) a WD synced to an iPhone or app, (2) a
web-based open application programming interface (API), (3)
an AI and ML interface, and (4) a Health Insurance Portability
and Accountability Act (HIPAA)–compliant Amazon Web
Services (AWS) server environment. This platform was
deployed at a skilled nursing facility where we collected >17,000
person-day data points (408,000 person-hour data points). These
data provided the training set for our extreme gradient boosting
(XGBoost) AI algorithm to correlate PA data to health outcomes
in the Activity Assessment of Patients Discharged from
Hospital-I (ACT-I) clinical trial. In this ACT-I trial, we enrolled
52 patients discharged from Stanford Hospital. Our data
demonstrated a robust predictive system to forecast health
outcomes in the enrolled patients based on their PA data. The
clinical study generated a receiver operating characteristic
(ROC) analysis with a sensitivity of 87% and a specificity of
79% in predicting the clinically significant events that were
reported by the patients. Our comprehensive AI profiling of the
PA of the discharged patients predicted their recovery or clinical
deterioration to enable the precision guidance of appropriate
and timely intervention during the 4-week follow-up period.

After considering various functionalities and requirements, the
WD offered the most practical and compliant design solution
to monitor discharged patients intelligently. However, the
wearable technology for discharged patients should embody
different applications and designs specific to their needs. In this
paper, we will demonstrate these specifications in more detail.
We will present AiCare’s comprehensive technology solution
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consisting of a WD, Bluetooth low energy (BLE)–enabled iOS
infrastructure, an ML algorithm to implement AI in patient care,
and API-enabled web technology to measure the daily activities
of patients. In this study, remote data collection, robust XGBoost
AI analysis, and the reliable prediction of clinical outcomes are
reported.

Methods

Patient Recruitment
We screened patients discharged from Stanford Hospital general
cardiology and advanced heart failure program.

Ethical Considerations
We obtained approval from the Stanford University Institutional
Review Board (53805) and recruited patients discharged from
Stanford Hospital. They were invited to participate in a research
study to demonstrate the safety and feasibility of the AiCare
platform. Informed consent was obtained from each participant
who consented to primary data collection and secondary data
analysis without additional consent. The privacy and
confidentiality of participants are protected by a deidentified
code that is assigned to each patient. No compensation was
offered to participants.

ML Predictive Platform
Our comprehensive ML profile of the discharged patients was
designed to predict their proper recovery to enable the precision
guidance of timely intervention during the 4-week follow-up
period. We developed an advanced data-driven XGBoost
analytics platform to predict clinical outcomes based on accurate
measurements of PA [10].

We compared several techniques to analyze our training data
set, including logistic regression, naïve Bayes, support vector
machine, and XGBoost. We measured precision, recall, F1-score,
area under the ROC curve (AUC-ROC), and average critical
activity level, using different data sets. Throughout the analyses,
XGBoost provided the highest area under the curve (AUC)
values and other measurements.

We chose XGBoost because of its interpretability through the
model training process, resistance to trivial features, and the
reduced risk of overfitting. For our health care use case, model
transparency was an important evaluation criterion. XGBoost
visualized the feature prioritization and automatic weight
assignments, which allowed us to explain the model insights to
the stakeholders for solution adoption. Occasionally, there are
noises in sensor data. To reduce the risk of overfitting, we
experimented with max_depth of 2, 3, 4, and 5 and
min_child_weight of 1, 2, 3, 4, and 5. On the basis of our list
of PA-related input feature set and data volume (>17,000
person-day data points), the hyperparameters we used were
max_depth of 3, learning_rate of 0.01, min_child_weight of 4,
and n_estimators of 100. This achieved the balance of model
accuracy, reducing the risk of overfitting and reaching a
tolerable learning speed. We experimented with both XGBoost
1.4.1 and XGBoost 1.7.5. A mean absolute error of 1.7.x was
introduced, which boosted the training algorithm convergence
process. Some assumptions we made regarding the XGBoost

model that should be considered include that the encoded integer
values for each input variable have an ordinal relationship; it
should not be assumed that all values are present. Our algorithm
could handle missing values by default. In our tree-based
algorithm, missing values were learned during the training
phase.

Our AI platform predicted clinical outcome risk during the
4-week follow-up period using the continuous PA data stream.
The PA features were measured by the number of occurrences
of the multiples of g-force (1 g, 2 g, and 3 g) in each 1-hour
time window. One hour was further divided into 7200 time
intervals of 500 milliseconds each. Within each 500-millisecond
period, the AiCare platform detected whether the minimum
level of acceleration (1 g) had occurred. If yes, it increased the
1-g value by 1 count. Therefore, on an hourly basis, a restless
user could potentially accumulate up to 7200 values of 1 g. The
same detection and computational logic applied to 2-g and 3-g
values. The directionless g-force was an aggregation of the

g-forces in 3 axes (directionless g-force = √ [g-force_x2 +

g-force_y2 + g-force_z2]). This trial used the initial 72-hour
period to build nonrisk baseline data and generated an alert
when any deviation occurred, which indicated worsening health
condition. The platform was able to detect the precursors of
rehospitalization.

A decision tree ensemble–based multiclass classification
approach was used to predict no risk, mild risk, and risk. A
maximum tree depth of 3 levels was deployed. The intrinsic
graph of the decision tree facilitated the explainability of the
model. Figure 1 presents a sample decision tree from our model.

This decision tree visualization provides insight into the gradient
boosting process. Figure 1 illustrates the importance and data
coverage of each input feature (1 g, 2 g, and 3 g) and the
decision-making process. We chose cross-entropy–based
softprob objective (the loss function in the first term of the
training objective equation presented after this paragraph) to
predict the probabilities of 3 categories in the risk profile.
Because of the tendency of the decision tree to bisect the data
space and to overfit the training data when classes are not well
separated, we introduced a regularization term to balance the
bias-variance trade-off (the second term of the training objective
equation presented after this paragraph).

(1)

To reduce false-positive results, we further enhanced the
platform with the clinician’s cognitive decision-based alerts.
The AI model was trained continuously with the patients’
up-to-date PA data. Besides the AI model (Figure 1), the AiCare
prediction platform was designed for higher scalability. The
inbound data pipeline supports open APIs that are hardware
agnostic and integrate with the PA features collected from
different hardware devices. The outbound patients’ predictive
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risk profiles were streamed to various clinical applications to
support broad clinical use cases. The ACT-I trial showed early

signs of clinical efficacy with this low-cost noninvasive
approach, enabling further scalability.

Figure 1. Sample decision tree.

Wireless Protocol
Considerations regarding the requirements of data collection,
long-term use, power consumption, wireless transmission
distance, legal radio frequency, home use, popularity, and cost
led to choosing BLE as the optimal protocol for home care
indoor use. The iPhone was connected to the cloud server via
the standard wireless or cellular protocol.

ID System and Data Collection
The personalized data were anonymized using an internally
specified ID system for data collection. A BLE media access
control address for each band enabled this functionality. The
patients wore the WD (a battery-powered smart band
[Rockband; AiCare Corp]) at all times to enable continuous
data collection (the Rockband has a battery life of 45 days for
continuous use).

AiCare Technology
The AiCare platform enabled data collection and real-time
analysis as described herein. The technology consisted of the
following: (1) the low-cost and water-resistant Rockband with
a battery life of 45 days for continuous use, (2) iPhone
connectivity, (3) a cloud-enabled HIPAA-compliant AWS
server, (4) open API architecture, (5) an ML and XGBoost
interface, (6) an iPhone app, and (7) an AI-enabled
COVID-19–specific questionnaire. This comprehensive platform
was deployed in an iOS environment to analyze the patients’
PA data. We assessed PA by a triaxial accelerometer, which
provides the optimal solution between technological complexity
and reliable measurement of PA. This service was designed to
ensure a smart, safe, and secure environment enabled with
real-time, intelligent, and timely tracking, detection, and analysis
to promote a healthy and independent lifestyle for discharged
patients.

Data Collection and Analysis
We used the Rockband for data collection. First, we defined the
moving average (MA) of PA. The visualization of time series
data obtained from AiCare’s platform allowed us to (1) identify
changes in energy level (EL) and movement percentage, (2)
establish a personalized baseline for each discharged patient,
and (3) understand the data trend to predict any deviation in
daily activity pattern.

The MA of PA
The MA method is widely used to smooth out time series data
by calculating the average values for a chosen period [4,12]. In
this study, we used simple MA (SMA) to avoid the noisy
measurements of the EL and movement percentage feature.
Each data point was calculated using SMA in time series data
and weighted equally. There was no need to set any weighting
parameters such as the weighted or exponential MA method to
generate SMA EL or movement percentages parameter. The
SMA formula was defined as follows:

(2)

where Pk represented the data point at time k, and n was the
chosen number of data points. A longer-term SMA was less
sensitive in reflecting the change in data movement compared
with a shorter-term SMA, which was used to highlight the major
trends in time series data. A shorter-term MA was relatively
faster to react to changes in trend, which was beneficial to
applications that required a QR code. The adjustment of the
value n in the equation measured the different effects of trend
analysis. The specific features and the definitions of PA are
outlined in Textbox 1.
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Textbox 1. Studied features and definitions for physical activity patterns.

• Daytime energy level (EL): the EL obtained during the daytime period

• Nighttime EL: the EL obtained during the nighttime period

• Daily EL difference (ELD): the difference between daytime EL and nighttime EL

• Normalized ELD: the daily ELD in percentage values

• Daytime active percentage (AP): 100% minus daytime resting percentage (RP)

• Daytime RP: the percentage of zero movements during the daytime period

• Nighttime AP: 100% minus nighttime RP

• Nighttime RP: the percentage of zero movements during the nighttime period

• Daily active percentage difference: the difference between daytime AP and nighttime AP

Kinetic EL
In this study, the estimation of kinetic energy was used to
describe the EL of PA. The original formula of kinetic energy
is as follows:

Kinetic energy = ½ × mass × velocity2 = ½ × mass

× (acceleration × Δt)2

(3)

The unit of kinetic energy is the joule (1 joule=1 kg m2/s2). To
obtain a directionless measurement of acceleration from the
accelerometer embedded in the Rockband, signal vector
magnitude (SVM) was applied to calculate the overall magnitude
of acceleration [13]:

(4)

where ax, ay, and az are the acceleration values from the triaxial
accelerometer. In this system, the sampling rate of the
accelerometer (Δt) is fixed and is equal to 50 Hz. The formula
of kinetic energy can be rewritten as follows:

Kinetic energy = (½ × mass × Δt2) × acceleration2

= Constant × SVM2

(5)

For each individual, the constant portion of this equation would
be the same at any given time. Therefore, kinetic energy could

be defined as SVM2 (m2/s2/kg). As a result, the estimation of
total EL from time 0 to time n is defined as follows:

Total energy level = SVM2(t1) + SVM2(t2) + ... +
SVM2(tn)

(6)

After obtaining the estimated wake-up time and resting time
from the cloud platform, we can calculate the total energy
expenditure during the daytime period and nighttime period,
respectively.

The daytime period is equal to the time between wake-up and
resting times on the same day, and the nighttime period is equal

to the time between resting time and subsequent wake-up time
on the following day. We used daytime EL to estimate the total
intensity of all PAs that happened during the daytime period
and nighttime EL to represent the total intensity of all PAs that
happened during the resting period. In addition, the daily EL
difference (ELD) has been used to evaluate the daily PA
changes:

Daily energy level difference = ELDaytime –
ELNighttime

(7)

A positive value of daily ELD indicates that daytime EL is
greater than nighttime EL. It may represent that an individual
is active during the day or inactive (sleeps well) during the night,
which is a healthy PA pattern. A negative value of daily ELD
can be obtained when nighttime EL is greater than daytime EL.
High nighttime EL may represent disrupted sleep patterns, and
thus movements can be detected by the Rockband at night. A
negative EL difference also means that the observed individual
is inactive during the day. To compare the change in individual
ELD, normalization has to be performed to convert the absolute
values of ELD into the percentage of ELD, which is defined by
the following equations:

(8)

Active percentage (%) = 100% – resting percentage
(%)

(9)

Daily active percentage difference (%) = Active
percentageDaytime – Active percentageNighttime

(10)

ML Algorithm for PA Analysis
Three key features—daily ELD, normalized ELD, and daily
active percentage difference—were used to create the algorithm
to predict the possible clinical worsening of discharged patients
who demonstrate specific PA patterns. A risk alert was generated
when the values of the features that were lower than a specific
threshold were detected. The collected data correlated with the
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detailed measurement of the patients’ PA. We assessed the
patients’ quality of recovery through accurate measurements of
their activities while they were awake, while performing various
activities of daily living (ADL) or participating in PA, and while
resting. Multiple layers of big data analytics, data mining
algorithms, and ML methods were tested. Specifically, we
applied the XGBoost ML algorithm. Our solution refined the
predictive capability by using the individual PA differences
during the active phase (walking, standing, or sitting) versus
the resting phase (lying down). XGBoost enhanced the
predictive accuracy of healthy recovery versus deterioration at
home and determined the need to contact health care
professionals. XGBoost distinguished itself from other gradient
boost learning methods by using clever penalization of trees,
proportional shrinking of leaf nodes, Newton boosting, extra
randomization parameter, and the implementation of single
distributed systems. These features enabled efficient ML
classification of the real-time monitoring of PA to refine the
patients’ risk assessment. XGBoost distributed the feed-forward
module of PA. The integration started with the PA module of

3 physical acceleration features (1 g, 2 g, and 3 g). The
penalty-based system determined the initial risk profiling by
PA weight and retrained in a stage-agnostic way to determine
the features and penalties to enhance the weight from PA. The
final stage repeats the same cycle as stage 2 and provides each
patient’s final weight and risk score. As the individual stage is
algorithm agnostic, this method provides randomized nonbiased
Newtonian analysis. The training data set was achieved by our
solution by predicting the clinical outcome based on the
individual PA differences during the active phase (walking,
standing, or sitting) versus the resting phase (lying down). On
the basis of >17,000 person-day data points of 36 participants
(unpublished data), we predicted healthy recovery versus death
in skilled nursing facility residents based on the PA data and
analysis (Figure 2). Using this training data set, our XGBoost
algorithm was designed to detect deterioration in the health
condition of the discharged patients to generate a risk alert,
which suggested the need for early medical intervention by
contacting health care professionals, and prevent hospital
readmission.

Figure 2. Data for clinical prediction. (A) Healthy outcome (physical activity [PA] ratio of active and resting phase: >60/40 ratio). (B) Deteriorating
(deceased) outcome (PA ratio of active and resting phase: <60/40 ratio). ALA and BPE are the anonymized names of the patients.

Statistics and the AUC-ROC Curve
The ACT-I trial was an observational study, and we performed
a correlational analysis between PA and clinical outcomes by
using the AI model. The population consisted of 249 patients
discharged from Stanford Hospital general cardiology and heart
failure services. The measurement units relate to 36 (14.5%) of
the 249 patients who completed a 28-day analysis. The response
is the clinical outcome, and the factor is a comprehensive profile
of PA from the patients. The choice of model is XGBoost.
XGBoost-generated graph is a commonly used graph that
summarizes the performance of a classifier over all possible

thresholds. It is generated by plotting the true-positive rate
(y-axis) against the false-positive rate (x-axis) as the threshold
for assigning observations to a given class. AUC measures the
entire 2D area under the ROC curve. The maximum value it
can reach is 1; generally, the greater the value, the better the
performance of the model.

ROC analysis was used to evaluate a classifier’s prediction
performance in biological and medical applications. Each data
point in the ROC curve comprises a pair: true-positive rate
(sensitivity) and false-positive rate (1−specificity), generated
by a discrete classifier with a specific threshold [14]. This study

JMIR Cardio 2024 | vol. 8 | e45130 | p. 6https://cardio.jmir.org/2024/1/e45130
(page number not for citation purposes)

Yang et alJMIR CARDIO

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


used several periods of MA from 3 days to produce all ROC
points in the ROC space. Considering the effect of the
imbalanced data set, meaning that the number of healthy
discharged patients is greater than the number of discharged
patients classified as deteriorating, we also used the
recall-precision curve to evaluate the performance of the
proposed algorithms. In the recall-precision curve space, the
x-axis and y-axis represent the recall values and precision
values, respectively, calculated from the different thresholds.

User Interface
On the weekly report, we displayed the line chart, which kept
track of the patient’s activity level, and at the bottom, we

generated a user-friendly emoji to report the health condition
measured by our algorithm every 12 hours. The descriptor
“Excellent” and a smiley face emoji indicate a healthy and
normal pattern. The descriptor “Concern” and a pensive face
emoji mean that there was an unusual pattern, indicating that
the patients should be aware of the possible worsening of their
clinical condition. Finally, the descriptor “Urgent” and a sad
face emoji signify an unhealthy signal from the patient’s PA
pattern. This prediction suggests that the patients should contact
their health care professionals (Figure 3).

Figure 3. Graphic user interface for alert notifications in 3 representative patients. MAYL, AVIC, and LOPA are also anonymized names of patients.The
descriptor and smiley face emoji indicate (A) “Excellent” health followed by the descriptor “Concern” and pensive face emoji for mild risk, (B)
“Excellent” health followed by the descriptor “Concern” and pensive face emoji for mild risk, and (C) “Excellent” health followed by the descriptor
“Urgent” and sad face emoji for indication of risk. ast: assistance.

Results

Patient Enrollment
We screened 249 patients discharged from Stanford Hospital
general cardiology and heart failure services. Of these 249
patients, 52 (20.9%) were enrolled, and 36 (14.5%) completed
a 28-day analysis. The reasons for noncompletion were as
follows: (1) withdrawal from study (10/16, 63%), (2) battery
failure (4/16, 25%), and (3) early readmission (2/16, 13%). Of
the 36 patients, 30 (83%) responded to the ADL questionnaire
and 30 (83%) responded to the satisfaction questionnaire.

Prediction
Our data demonstrated a robust prediction system to forecast
the worsening clinical outcomes of these patients based on their
PA data, achieving a sensitivity of 87% and a specificity of
79%. On the basis of real-time assessment of PA, our technology
offered clinically reliable predictions regarding the discharged
patients who would need to contact their health care
professionals or caretakers to report their worsening clinical
condition. This capability allowed early intervention to prevent
further deterioration of these patients (Figure 4) [10].

After the patient’s discharge to home, the AiCare platform is
deployed to the patient via the Rockband and iPhone. PA data
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and trend are displayed on the iPhone app. If there is any
negative change in PA, the patient is contacted for a clinical
evaluation. The ADL questionnaire is administered to the patient
to see whether there is any correlation.

Our solution provided a robust low-cost technology to measure
PA and predict clinical outcomes. Our platform also included
the nudge technology for an AI-enabled questionnaire. This
platform was designed to deliver a seamless, low-cost, and
user-friendly environment for the remote monitoring of
discharged patients at home to empower the patients and family
members. This study analyzed the predictive capability of our
platform as described in Textboxes 2-4.

The clinical diagnoses were categorized into true positive, true
negative, false positive, and false negative as shown in Textbox
5.

The technical parameters were achieved and categorized into
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) as shown in Textbox 6.

Questionnaires were also administered at the time of risk alert
as well as at the completion of the study (Textbox 7). The ADL
questionnaire was administered to augment the PA data. The
findings demonstrated modest correlation with the predictive
capability. The patients whose condition deteriorated
(true-positive group) showed the lowest function in terms of
ADL, whereas those who remained stable showed higher
response scores (true-negative group). However, there were low
ADL scores in the false-positive group and high ADL scores
in the false-negative group. The responses to the satisfaction
questionnaire demonstrated that this platform was well received.
The majority of the users stated that they would recommend
the technology to others.

Figure 4. Patient flow. ADL: activities of daily living; ML: machine learning.

Textbox 2. Duration to risk prediction and intervention categorized into true positive (TP), true negative (TN), false positive (FP), and false negative
(FN).

• Mean number of days from discharge to risk prediction: TP=9 (SD 4); TN=none; FP=7 (SD 3); and FN=none

• Mean number of days from risk prediction to patient-initiated contact of health care professional: TP=5 (SD 2); TN=none; FP=2 (SD 2); and
FN=none

• Total activity (1 g, 2 g, and 3 g per patient): TP=33,351 (SD 15,774); TN=38,998 (SD 19,062); FP=43,430 (SD 16,638); and FN=30,714 (SD
16,998)
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Textbox 3. Formulas of area under the receiver operating characteristic curve metrics (TP=true positive, TN=true negative, FP=false positive, and
FN=false negative).

Accuracy:

Precision and positive predictive values:

Sensitivity, recall, or true-positive rate (TPR):

Specificity or true-negative rate:

Negative predictive values (NPV):

False-positive rate (FPR)= 1 − specificity:

Textbox 4. Calculated values for the area under the receiver operating characteristic curve.

• Sensitivity: 90.01%

• Specificity: 81.55%

• Positive predictive value: 77.1%

• Negative predictive value: 92.3%

• Accuracy: 85%

• False-positive rate: 18.45%
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Textbox 5. Clinical diagnosis and prediction data.

True positive (n=17)

• Heart failure (n=9)

• Arrhythmia (n=6)

• Atrial (n=5)

• Ventricular (n=1)

• Device (n=1)

• Ischemia (n=1)

True negative (n=9)

• Arrhythmia (n=6)

• Atrial (n=4)

• Ventricular (n=2)

• Ischemia (n=2)

• Heart failure (n=1)

False positive (n=11)

• Arrhythmia (n=5)

• Atrial (n=3)

• Ventricular (n=2)

• Heart failure (n=2)

• Ischemia (n=2)

• Pulmonary hypertension (n=2)

False negative (n=2)

• Arrhythmia, ventricular (n=1)

• Pericarditis (n=1)

Textbox 6. Technical findings.

• Signal loss hours per patient: TP=79; TN=74; FP=71; and FN=60

• Battery life per patient (d): TP=34; TN=29; FP=32; and FN=19

• Early replacement of the Rockband (number of patients): TP=1; TN=4; FP=0; and FN=1

Textbox 7. Response to the 7-question activities of daily living (ADL) questionnaire (7/7, 100%: highest function; n=30).

• True positive: 5.5 (positive ADL engagement)

• True negative: 6.25

• False positive: 4.7

• False negative: 7

Discussion

Principal Findings
We screened 249 patients discharged from Stanford Hospital
general cardiology and heart failure services. Of these 249
patients, 52 (20.9%) were enrolled, and 36 (14.5%) completed
a 28-day analysis looking into the correlation between PA and

clinical outcome. Using our XGBoost model, we plotted the
true-positive rates against false-positive rates, which helped us
to generate the AUC-ROC curve and calculate the 2D AUC
value to determine the performance of the model. Our data
demonstrated a robust prediction system to forecast the
worsening clinical outcomes of these patients based on their
PA data, achieving a sensitivity of 87% and a specificity of
79%.
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This innovative platform enables low-cost, robust, and precise
PA tracking of patients discharged from hospital to predict
stable versus unstable clinical recovery, using a WD and an
iPhone. This technology is powered by our algorithms,
individualized big data, personalized behavior- and
function-specific web-based software, and intelligent ML
analytics. This comprehensive platform offers an effective
convergence of eHealth, AI, and telemedicine technology over
internet-enabled mobile devices to leverage the economical,
low-cost, and pervasive internet technology and, potentially,
may address the socioeconomic divide seen today. Patient care
at home by family members or by the individual patient is
personalized by AI for maximum safety. This technology will
fill an important gap in telemedicine through the use of
user-friendly, real-time, and 24/7 remote monitoring for clinical
outcome prediction. Patients in transition who are discharged
from the hospital, emergency department, or urgent care clinic
will benefit from this technology, which can monitor their
progress and predict clinical deterioration to enable early
intervention for successful recovery at home.

This ACT-I trial used monitoring technology to measure
in-home activity and predict clinical outcomes. Although many
innovative technologies claim accurate measurements of vital
signs, there is no platform with proper validation of clinical
outcome prediction data. A wide range of longitudinal studies
to demonstrate the effectiveness of remote monitoring
technology have been performed [10,15]. Most research was
conducted within the area of passive infrared motion sensor
technology, followed by research on body-worn sensors.
Although the research into the use of monitoring technologies
has been extensive, most studies only focused on demonstrating
the functionality of the proposed monitoring technology by
simulating activities in a laboratory setting or on an existing
data set. As a result, the functionality of most systems has only
been demonstrated in general terms or mechanical accuracy,
sensitivity, and specificity. The long-term clinical effects of
using monitoring technology are less well studied; for instance,
in a meta-analysis on ambient sensors for older adult care, 25
of the 141 studies were pilot studies, with 11 focusing on the
use of passive infrared motion sensor technology and 10 on the
use of multicomponent monitoring technology. Study durations
ranged from 3 weeks to 3 years [16]; only 4 studies were
longitudinal, including 1 randomized controlled trial and 1
implementation study [17]; and all focused on the use of motion
sensor technology. WDs have evolved from merely telling time
to encompassing ubiquitous computing applications,
miniaturized sensors, and wearable computer technology. Fitbit
released its first wearable watch in 2009 and focused on activity
tracking. During the ensuing years, smartwatches became
common technology products manufactured by electronics
companies. These developments led to a set of design guidelines
for wearability and WDs that make tracking PA a much more
attractive target for discharged patients [9].

PA is one of the major determinants for overall clinical
outcomes in chronic diseases, including diabetes, hypertension,
and heart disease, as well as mental health issues [17]. Reaching
a sufficient level of PA could reduce the risk of cardiovascular
disease (CVD), type 2 diabetes, obesity, depression, and anxiety

[18-20]. PA even plays an important role in cancer prevention
at specific sites, including breast and colon cancers [16]. In
2017, the Centers for Disease Control and Prevention advocated
adding PA as 1 of the 4 vital signs [20]. Despite these efforts,
automated clinical outcome prediction systems do not exist.
There is a need for the accurate prediction of morbidity and
mortality, particularly among older adults who are most
frequently readmitted to the hospital. Patients with chronic
diseases, cardiometabolic syndrome, and dementia are often
underserved, growing in numbers, incurring higher costs to our
society, and becoming increasingly vulnerable. Our large data
set obtained from a skilled nursing facility and consisting of
>17,000 person-day data points (408,000 person-hour data
points of 36 patients captured over 2 years), demonstrated a
high correlation of PA analysis among the residents who
survived versus those who died. Using this as our training data
set, we were able to identify with high accuracy patients who
experienced stable recovery versus those who experienced
unstable recovery during the most vulnerable 1-month
posthospital discharge period.

The evidence-based management of CVDs requires substantial
amounts of resources, including advanced therapeutics, complex
diagnostics, and sophisticated clinical trials. However, the
reliable prediction of clinical outcomes after hospital discharge
has presented some challenges [11]. In response, various
approaches using ML models such as artificial neural network,
decision tree, support vector machine, and naïve Bayes have
been attempted to predict clinical outcomes, taking into account
steps, vital signs, medical conditions, and demographic
information [11]. In one of the studies conducted on arrhythmic
sudden cardiac death, a deep learning technology approach
termed Survival Study of Cardiac Arrhythmia Risk was
developed to predict risk for 156 patients with ischemic heart
disease. In this model, cardiac magnetic resonance images and
covariate data such as demographics, risk factors,
electrocardiogram (ECG) measurements, medication use, and
outcomes were used as inputs for the 2 branches, where 1 branch
is used to visualize the heart’s 3D ventricular geometry, and
the other is used to extract arrhythmic sudden cardiac death
risk–related imaging features from the cardiac magnetic
resonance images. All these data were then used to create a
survival curve individualized for each patient with accurate
predictions for up to 10 years. However, the limitations of this
study include an inability to account for competing risks for the
same symptoms and covariates that were not exhaustive or fully
inclusive [17]. In another instance, regression and convolutional
neural network models were used to predict CVD risk for
women. As CVDs are the primary cause of death in women,
with evidence of sex bias in the diagnosis of CVDs , the
exploration of screening factors for risk detection has never
been more urgent. This study assessed the critical risk–screening
opportunities offered to women and how the integration of AI
can greatly benefit health care providers in interpreting data on
women [17,21]. AI may propel the analysis of patient data into
meaningful interpretations of patient health, providing health
care providers with an additional layer of guidance for patient
management plans. After patient discharge, ML is still viable
in assisting with remote health monitoring through systems such
as Wanda-CVD, which uses patients’ blood pressure and BMI
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measurements as well as their low-density lipoprotein and
high-density lipoprotein cholesterol levels to coach them and
improve their risk factors for CVD. However, using limited
inputs such as blood pressure readings and cholesterol levels
may not be entirely meaningful. In a previous study, only less
than half of the predictions based solely on cholesterol levels
and BMI measurements were correct [8,22].

In contrast, our XGBoost ML model enhanced the accuracy of
predicting stable recovery versus clinical deterioration after
discharge from the hospital. Specifically, XGBoost performs
self-adaptive feature selection and prioritization among our data
dimensions, mitigates the risk of overfitting by controlling the
complexity of the trees with penalization on leaf nodes to cope
with the high-frequency nature of our temporal data set, uses a
Newton boosting algorithm to better learn the tree structures,
and decorrelates the individual trees with a randomization
parameter to reduce the bias and variance of the model.
Compared with the existing approach, our AI-enabled solution
is unique in the following ways. First, our real-time
PA-based algorithm enables risk prediction during the critical
1-month posthospital discharge period, whereas most of the
other research on risk prediction focused on a much longer time
frame of 5 to 10 years. Our approach allows a shift to early
intervention and the prevention of clinical deterioration during
the postdischarge period. Second, our training data set for the
ACT-I clinical trial consisted of a large number of data sets
obtained during a long follow-up period. Our data covered a
2-year duration, which enabled a longitudinal follow-up for a
personalized benchmark to conduct individualized analysis and
risk prediction. Third and last, our low-cost at-home patient
onboarding process did not rely on complex hardware such as
imaging or remote ECG equipment. The Rockband WD was
low cost, maintenance free, and disposable. Our
hardware-agnostic AI framework demonstrated highly and easily
adaptable features using our simple WD.

Limitations
Although the majority of the patients were satisfied with our
platform, there were some compliance issues related to the use
of the WD. Furthermore, the measurement of PA only may not
provide a comprehensive assessment and prediction of an
individual patient’s clinical condition. Our future trial, ACT-II,
will expand on the ACT-I trial’s limitations by improving the

specificity (false positive) rate of the ACT-I trial by evaluating
the efficacy of an augmented XGBoost algorithm. We will use
an Apple Watch to complement PA measurements by also
monitoring HR, HR variability, ECG, oxygen saturation, blood
pressure (separate blood pressure measurement device), clinical
data, and genomics to better identify stable versus unstable
recovery. Our novel platform in an iOS environment will enable
the capture of multidimensional real-time data to enhance
patients’ awareness of their clinical condition and health care
professionals’ guidance of patient management. We will
investigate the feasibility of this platform, consisting of an Apple
Watch, an iPhone, an XGBoost interface, and a
HIPAA-compliant AWS environment, to monitor the dynamic
biometric data, predict patients’ clinical outcome, and improve
patient compliance.

Conclusions
The ACT-I trial demonstrated a critical proof of concept of the
Rockband WD to enable real-time analysis of patients’ PA data
remotely. We developed a cloud-enabled XGBoost algorithm
and intelligent sensor technology to enable precision home
health care. The XGBoost algorithm quantified, integrated, and
predicted the pattern of each patient’s outcome seamlessly with
high accuracy, precision, and recall. The Rockband cloud
backend personalized the big data for behavior- and
function-specific interactive software, and ML analytics allowed
a comprehensive platform to converge eHealth, AI, and
telemedicine technology. Our internet-enabled mobile devices
leveraged the economical, low-cost, and pervasive technology
to personalize health care by enabling prevention and early
intervention through the real-life clinical implementation of
mobile device technology and AI. Our approach developed,
tested, and disseminated the next generation of health care
strategy by focusing on precision health, using diagnostic
information collected in real time from patients’ PA data while
they were recovering at home. Our XGBoost algorithm enabled
this scalable, portable, and distributed processing framework.
This novel technology will introduce a nascent approach to
patient care to redefine clinical practice by predicting patient
outcome based on a comprehensive analysis of behavioral
phenotype. This real-time risk monitoring and clinical outcome
prediction platform will advance the future of remote patient
care.
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