
Original Paper

Accurate Modeling of Ejection Fraction and Stroke Volume With
Mobile Phone Auscultation: Prospective Case-Control Study

Martin Huecker1, MD; Craig Schutzman1, MD; Joshua French1, MD; Karim El-Kersh2, MD; Shahab Ghafghazi1,

MD; Ravi Desai3, MD; Daniel Frick1, MD; Jarred Jeremy Thomas1, MD
1Department of Emergency Medicine, University of Louisville, Louisville, KY, United States
2Department of Pulmonary and Critical Care Medicine, The University of Arizona, Phoenix, AZ, United States
3Lehigh Valley Health Network Cardiology and Critical Care, Allentown, PA, United States

Corresponding Author:
Martin Huecker, MD
Department of Emergency Medicine
University of Louisville
530 South Jackson St.
Louisville, KY, 40202
United States
Phone: 1 5028525689
Email: martin.huecker@louisville.edu

Abstract

Background: Heart failure (HF) contributes greatly to morbidity, mortality, and health care costs worldwide. Hospital readmission
rates are tracked closely and determine federal reimbursement dollars. No current modality or technology allows for accurate
measurement of relevant HF parameters in ambulatory, rural, or underserved settings. This limits the use of telehealth to diagnose
or monitor HF in ambulatory patients.

Objective: This study describes a novel HF diagnostic technology using audio recordings from a standard mobile phone.

Methods: This prospective study of acoustic microphone recordings enrolled convenience samples of patients from 2 different
clinical sites in 2 separate areas of the United States. Recordings were obtained at the aortic (second intercostal) site with the
patient sitting upright. The team used recordings to create predictive algorithms using physics-based (not neural networks) models.
The analysis matched mobile phone acoustic data to ejection fraction (EF) and stroke volume (SV) as evaluated by echocardiograms.
Using the physics-based approach to determine features eliminates the need for neural networks and overfitting strategies entirely,
potentially offering advantages in data efficiency, model stability, regulatory visibility, and physical insightfulness.

Results: Recordings were obtained from 113 participants. No recordings were excluded due to background noise or for any
other reason. Participants had diverse racial backgrounds and body surface areas. Reliable echocardiogram data were available
for EF from 113 patients and for SV from 65 patients. The mean age of the EF cohort was 66.3 (SD 13.3) years, with female
patients comprising 38.3% (43/113) of the group. Using an EF cutoff of ≤40% versus >40%, the model (using 4 features) had an
area under the receiver operating curve (AUROC) of 0.955, sensitivity of 0.952, specificity of 0.958, and accuracy of 0.956. The
mean age of the SV cohort was 65.5 (SD 12.7) years, with female patients comprising 34% (38/65) of the group. Using a clinically
relevant SV cutoff of <50 mL versus >50 mL, the model (using 3 features) had an AUROC of 0.922, sensitivity of 1.000, specificity
of 0.844, and accuracy of 0.923. Acoustics frequencies associated with SV were observed to be higher than those associated with
EF and, therefore, were less likely to pass through the tissue without distortion.

Conclusions: This work describes the use of mobile phone auscultation recordings obtained with unaltered cellular microphones.
The analysis reproduced the estimates of EF and SV with impressive accuracy. This technology will be further developed into a
mobile app that could bring screening and monitoring of HF to several clinical settings, such as home or telehealth, rural, remote,
and underserved areas across the globe. This would bring high-quality diagnostic methods to patients with HF using equipment
they already own and in situations where no other diagnostic and monitoring options exist.
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Introduction

Cardiovascular disorders contribute immensely to morbidity
and mortality in the United States and worldwide. Heart failure
(HF) is defined as “a clinical syndrome with symptoms and/or
signs caused by a structural and/or functional cardiac
abnormality and corroborated by elevated natriuretic peptide
levels and/or objective evidence of pulmonary or systemic
congestion” [1]. At least 64.3 million people around the world
have HF, with that number expected to increase due to improved
health care [2]. HF accounts for 1% to 2% of all hospitalizations
in high-income countries and is the top cause of admission for
patients older than 65 years of age [2]. The United States spent
more than US $30 billion on HF in 2012, with a projected
increase to US $69.8 billion by 2030 [2]. The mortality of HF
ranges from as low as 2% to 4% per year in those with chronic
HF and up to 36.5% in those with acute HF [2]. In the United
States, the mandatory federal pay-for-performance Hospital
Readmissions Reduction Program targets patients with HF and
ties reimbursement to 30-day, all-cause, Medicare,
fee-for-service readmissions after initial hospitalization for HF;
rates reach as high as 23% in some studies [3].

HF is divided into three categories based on the left ventricular
ejection fraction (LVEF): (1) HF with reduced ejection fraction
(EF), (2) mildly reduced EF, and (3) preserved EF, with EF
ranges of ≤40%, 41% to 49%, and ≥50%, respectively [1,2].
LVEF, the percentage of blood in the left ventricle that exits
into the aorta during a cardiac cycle, is determined using various
imaging techniques, such as echocardiography, cardiac magnetic
resonance imaging, nuclear cardiology, or cardiac catheterization
[1,4,5]. Thus, the classification of HF depends on the accurate
determination of LVEF using expensive diagnostic methods
obtained in outpatient or inpatient settings [6,7]. A study from
the United Kingdom found that most new HF cases were
diagnosed in inpatient settings despite the presence of symptoms
that should have triggered an earlier outpatient evaluation [8].
This is at least partly due to barriers such as the availability of
transportation, cost concerns, and access to medical facilities.
Millions of potential patients with HF worldwide lack access
to even basic medical care and are, therefore, unable to undergo
risk assessment for heart disease.

The management of patients diagnosed with HF involves serial
testing to detect changes in heart function. The techniques used
to measure LVEF and other cardiac parameters (cardiac output,
indexed stroke volume, etc) can have significant variability,
limiting prognostication and treatment efficacy [5]. Diagnostic
tests to determine EF also experience great variability, limiting
prognostication and treatment efficacy [5]. Due to the somewhat
limiting paradigm of EF categories, more regular use of vital
measures such as stroke volume (SV) could delineate patients
with HF with more granularity, even having implications for
treatment [9]. Telehealth represents a potential mechanism to

reduce the rates of 30-day readmission in patients with HF [10].
Patients without access to large hospital systems and diagnostic
testing would benefit immensely from a low-cost yet accurate
method of determining these parameters. The technology
harnessing more than 8 billion global mobile phones could
vastly improve health care disparities [11].

This pilot study describes a novel diagnostic technology using
audio recordings from a standard mobile phone. Prior
publications have sought both invasive and noninvasive means
of describing cardiac function, but very few have moved out of
research phases to clinical or practical use [12-16]. This study
aims to establish a set of markers using complex but
reproducible mathematics from mobile phone auscultation data
that would enable the determination of EF and SV for HF
detection, classification, and monitoring. The goal of this study
was to demonstrate the feasibility of creating mobile phone
models for the classification of LVEF and SV by matching
echocardiographic results to phone recordings.

Methods

Settings and Participants
This is a pilot prospective study of convenience samples of
patients presenting to 2 hospital systems for cardiac workups.
At site 1, an urban academic center in the Southern United
States, study personnel obtained recordings from patients who
received inpatient clinical evaluation for cardiac disease. All
participants had a transthoracic echocardiogram within 30 days.
At site 2, a large community clinical site in the Northeastern
United States, patients already scheduled for outpatient
transthoracic echocardiogram were enrolled at the time of the
study, and recordings were obtained at the same time as the
echo. To minimize audible confounding, the team excluded
patients with mechanical heart valves. Patients were also
excluded if they had a positive SARS-CoV-2 test, were younger
than 18 years of age, or were pregnant.

Ethical Considerations
This study was approved by the human participants’ research
institutional review boards of the University of Louisville (
number 20.0605) at both clinical sites. Written informed consent
was obtained from all participants, with the specification that
data obtained would be used for research. Patients had the
freedom to withdraw at any time, including after data collection
and analysis. Privacy and confidentiality were protected by
storing all data in secure, encrypted locations. At all times, only
IRB-approved personnel had access to the stored data. The
participants did not receive any compensation for participation.
Patients were consented after the completion of any urgent or
emergent diagnostic testing or treatment and after evaluation
by inpatient physician teams, to ensure that the study would not
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delay necessary evaluation or treatment. The study team did
not recommend, order, or perform any testing.

Data Collection
The research team obtained demographics and clinical
information from the electronic medical record at each site.
Echocardiography was obtained by a single laboratory at each
clinical site. The coders used the EF from the final interpretation
of the echocardiogram report. Data from site 1 were uploaded
into CardBox (Box Inc), a web-based, encrypted research cloud
space. Data from site 2 were uploaded to password-protected
Google Drive. Data included demographics and formal echo
results, as well as other data such as cardiac catheterization
reports, vascular imaging, and primary admission diagnoses.
Clinical data were matched to respective (deidentified) sound
recording files using unique identification codes. SV estimates
were based on the Teichholz method—not because it was
preferred, but because it was available on most echocardiogram
reports.

Technology and Analytic Method
In addition to open-source Python (Python Software
Foundation)-based software, 2 proprietary software were used
in the study. The first is Another Sound Recorder (ASR), a
recording app developed by NLL APPS. It allowed all
recordings to be made in a standardized format across the
various phone brands used in the study. The second is Time
Series Dynamics (TSD) software developed by Fleming
Scientific. It maps time series observation of systems, such as
auscultation and waveform data, into a set of descriptive
“features.” The mapping relies entirely on models from
“dynamics” which, in physics, is the study of motion resulting
from force. These “physics-based” features can then be reduced
and used as dependent variables in rigorous statistical modeling.
The TSD approach, which intends to preserve physical and
mathematical rigor throughout the modeling process, eliminates
the need for neural networks and makes it possible to work
effectively with smaller data sets [17]. The research team has
extensive experience with the TSD approach and is currently
using it in analogous respiratory mobile phone auscultation
studies funded by the National Institutes of Health (NIH) and
the Biomedical Advanced Research and Development Authority
(BARDA).

Cardiac auscultation acoustics represent primarily the sounds
of hemodynamics, which is the movement of blood resulting
from forces applied by the heart and vascular system. In
traditional auscultation, providers use these acoustics to make
inferences about organ and system functionality. The approach
in this paper is analogous, except that the acoustics are mapped
by dynamics-based models. The approach also differs from
more common machine learning approaches to auscultation
data processing that typically rely on some combination of
frequency domain, linear stochastics, and neural networks.

The research team hypothesizes that, in the classification of
hemodynamics, the use of dynamics-based mapping is domain
relevant. It is also consistent with published chaos-based and
enthalpic-based views of cardiac function [18,19]. In the
approach, thousands of dynamics-based features were extracted

from the acoustic recordings by TSD software. Selected features
were then matched to echocardiogram findings by simple
logistic regression [20]. To maintain statistical rigor by avoiding
overfitting, the number of features used in the regression was
limited to 4, which represents the minimum number of positive
or negative testing cases divided by 10. The 4 features were
selected by the maximum entropy method that produced 35
similar combinations that were evaluated separately for best
performance. Dimensionality reduction was sufficient to
eliminate the need for a validation step.

Developed by Fleming Scientific, this proprietary unpublished
technology extracts features found in sound recordings from
microphones of unmodified mobile phones. By using models
from actual physical acoustics, we created algorithms to match
echocardiogram findings. The physics models are designed to
describe hemodynamics from the acoustic data, thereby making
it possible to classify organ functionality directly. The method
produces thousands of candidate features for modeling but uses
only a few to avoid overfitting. The features were matched to
echocardiogram findings by using logistic regression [20]. The
approach eliminates the need for neural networks entirely and
offers a more rigorous approach to developing artificial
intelligence (AI) software.

The research team obtained audio recordings with an assortment
of unmodified, nonencased Android mobile phones including
LG and Motorola Trac phones and 2 Samsung Galaxy models.
The voice recorder was standardized by using ASR, a free
open-source app easily installed on any Android product. Both
sites used the following ASR settings: WAV format, similar
frame speed, mono recording, and no filters or other settings
activated. Recordings took place in settings with moderate
background noise, such as emergency department rooms,
inpatient rooms, and echocardiography labs.

Study personnel obtained the recordings by pressing the
microphone lightly into the patient’s skin to minimize surface
noise. The participants underwent a 20-second recording at the
aortic valve area (second intercostal space just to the right of
the sternum). The participants were not required to hold their
breath. Patients could be in any position for recording, but most
were sitting or semirecumbent. The phones were capable of
capturing frequencies as low as 10 Hz, which are well below
the range of human auscultation perception. The phones were
kept in a secure location at each site, for use only by study
personnel.

Recordings from patients underwent physics-based analysis to
create the features for use in modeling. The features would serve
as independent variables while the dependent variables were
parameters such as LVEF, determined by diagnostic testing
during hospitalization. By matching selected features to the
gold-standard parameters from established diagnostic
procedures, algorithms were created that enable common phones
to reproduce the gold-standard parameters.

The goal of the analysis was to demonstrate the feasibility of
creating mobile phone algorithms for the classification of LVEF
and SV by matching echocardiographic results to the phone
recordings.
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TSD differs from machine learning–based AI in that its
overarching goal is to deduce the best physics-based models
for making algorithms, thereby maintaining rigor as much as
possible. The hemodynamics deduced in this study are consistent
with published chaos-based and enthalpic-based views of cardiac
function [18,19]. However, this study was not designed to
provide physiological verification of the deduced physics.

TSD’s physics-based approach eliminates the need for neural
networks and overfitting strategies entirely, potentially offering
advantages in data efficiency, model stability, regulatory
visibility, and physical insightfulness [17]. TSD’s use of passive
signals rather than active signals differs from echocardiogram
and most other gold-standard imaging technologies; it uses an
analytical foundation designed to describe dynamics directly.

Although the algorithms are based on physics, evaluating them
relies on statistical methods consistent with logistic regression
analysis. The algorithms were evaluated for the area under the
receiver operating curve (AUROC) using the trapezoidal
method. Values >0.9 can be interpreted as “excellent,” whereas
values in the range of 0.8-0.9 can be interpreted as “good” [21].
Sensitivity, specificity, and accuracy were also calculated and
presented with confusion matrix values per common practice.
The validity of features was also verified by Z test>2 criteria in
addition to the heuristic argument.

Results

Study Population
In total, 113 patients were enrolled across 2 sites. No recording
had to be excluded from the analysis. However, some

echocardiogram reports were excluded because of incomplete
or inconsistent reporting of EF (n=2) or SV (n=50). From the
recent echocardiogram reports, it was possible to match EF
findings in 113 patients and estimated SV in 65 patients. For
the 113 patients in the EF cohort, the mean age was 66.3 (SD
13.3) years. The cohort consisted of 61.7% (n=70) male patients
and 38.3% (n=43) female patients. Regarding race and ethnicity,
77% (n=87) were White, 20.4% (n=23) were Black, and 2.6%
(n=3) were Hispanic or Latino. For the 65 patients in the SV
cohort, the mean age was 65.5 (SD 12.7) years. The cohort
consisted of 66% (n=43) male patients and 34% (n=22) female
patients. Regarding race and ethnicity, 74% (n=48) were White
and 26% (n=17) were Black. The EF cohort had a mean BMI
of 28.3 (SD 6.323) and a mean body surface area (BSA) of 2.03
(SD 0.273). The SV cohort had a mean BMI of 29.3 (SD 6.561)
and a mean BSA of 2.05 (SD 0.272).

LVEF Results
The 113-participant EF cohort consisted of 81 participants from
site 1 and 32 from site 2. Of note, 57 participants had EF <55%
and 56 had an EF>55%. For analysis, the cases were separated
into a binary “positive” versus “negative” classification based
on the HF disease EF cutoff of 40%. A total of 42 participants
with EF ≤40% were designated “positive” in binary
classification and they represented 37.2% (n=42) of the cohort;
the other 71 (62.8%) participants had EF >40%. The number
of features was limited to 4 to avoid overfitting the algorithm.
The AUROC was 0.955 (“excellent”), as shown in Table 1.
Case separation was also excellent as shown in Figure 1. The
EF algorithm accuracy performed similarly across
demographics, BSA, and clinical sites (Table 2).

Table 1. Ejection fraction algorithm performance and features.

Z testFeaturesModel evaluationCases (N=113)

2.31AUROCa 0.955True negative (n=68)

7.22Sensitivity 0.952False negative (n=2)

3.93Specificity 0.958True positive (n=40)

9.44Accuracy 0.956False positive (n=3)

aAUROC: area under the receiver operating curve.
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Figure 1. Actual versus predicted ejection fraction (EF). FN: false negative; FP: false positive; TN: true negative; TP: true positive.

Table 2. EFa model had high accuracy across sex, race, BSAb, and age.

AccuracyProfile

Sex

0.94Male

0.98Female

Race

0.97White

0.95Black or African American

BSA

0.97BSA<2.04c

0.95BSA>2.04c

Age (years)

0.98Younger than 66.3c

0.93Older than 66.3c

Site

0.981

0.972

aEF: ejection fraction.
bBSA: body surface area.
cEF sample mean.

SV Results
In all, 65 participants with SV data were all enrolled at site 1.
Using a clinically relevant cutoff of <50 mL, 33 (51%) were
categorized as positive and 32 (49%) were categorized as
negative. For analysis, the number of features was limited to 3
to avoid overfitting the algorithm. Results showed a sensitivity

of 100% for the model, with an AUROC of 0.922 (Table 3).
Figure 2 illustrates case separation. The SV algorithm accuracy
performed similarly across demographics but had a slight drop
off in accuracy among patients with higher BSA (Table 4).
Acoustics frequencies associated with SV were observed to be
higher than those associated with EF and, therefore, were less
likely to pass through tissue without distortion.
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Table 3. SVa algorithm performance and features.

Z testFeaturesModel evaluationCases (N=65)

4.01AUROCb 0.922True negative (n=27)

2.52Sensitivity 1.000False negative (n=0)

3.13Specificity 0.844True positive (n=33)

N/AN/AcAccuracy 0.923False positive (n=5)

aSV: stroke volume.
bAUROC: area under the receiver operating curve.
cN/A: not applicable.

Figure 2. Actual versus predicted SV. FP: false positive; SV: stroke volume; Teich: Teichholz; TN: true negative; TP: true positive.

Table 4. SVa model had high accuracy across sex, race, BSAb, and age.

AccuracyProfile

Sex

0.93Male

0.91Female

Race

0.92White

0.94Black or African American

BSA

0.97BSA<2.05c

0.88BSA>2.05c

Age (years)

0.94Younger than 65.5c

0.91Older than 65.5c

Site

0.921

aSV: stroke volume.
bBSA: body surface area.
cSV sample mean.
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Discussion

Principal Findings
In this cohort from 2 clinical sites, mobile phone auscultation
and dynamics-based modeling allowed accurate detection of
low LVEF and SV. These results were obtained using ordinary
mobile phones to record from 1 anatomic site with no additional
hardware or materials. Prior research suggests that both mobile
phones and acoustic recording can assist in HF diagnosis or
monitoring; however, no current technologies use basic cellular
microphone capability to obtain the acoustic data that can
estimate EF or SV. This novel, proprietary unpublished
technology has far-reaching potential for screening and
management of patients with HF, including the undiagnosed.
Perhaps the most obvious use for the technology is telehealth
and application to remote and underserved global settings, where
even a physical exam by the clinician may not be possible.

Prior work has described technologies that can aid in the
monitoring of patients with HF [22-26]. Most technologies use
telehealth communications and patient data entry, such as
weight, blood pressure, and pulse rate, to risk stratify and
monitor disease progress [22,24]. A 2011 Cochrane review
established the mortality benefit of telemonitoring in patients
with HF [27]. A review by Conway et al [22] identified 4
categories: (1) structured telephone calls; (2) videophone; (3)
voice response, which involved the manual input of data using
a telephone keypad in response to questions from a computerized
voice response system; and (4) telemonitoring. Structured phone
calls and telemonitoring showed efficacy in reducing all-cause
mortality [22]. Technologies that use true physiologic
monitoring require invasive intrathoracic device implantation
[28,29], specialized electrocardiography [30], stethoscopes,
patches [31,32], or other expensive equipment. Protocols that
integrate mobile phones typically use Bluetooth to pair
proprietary equipment to a phone in order to transmit data to
the care providers [22,25].

Very few described innovations address population screening
for HF. A review by Brons et al [33] summarized 99 studies,
finding that 100% of algorithms used body weight, 85% used
blood pressure, and 61% used heart rate. Bachtiger et al [8]
compared 105 patients with low EF to 945 with EF >40% using
AI-electrocardiogram (ECG) retrained to interpret a single-lead
ECG input. Using a weighted logistic regression from pulmonary
and handheld positions, they found an AUROC of 0.91 (95%
CI 0.88-0.95), sensitivity of 91.9%, and specificity of 80.2%
[8]. One study proposed a method to detect low EF using
machine learning or artificial intelligence [34]. Attia et al [35]
report on a method using AI-augmented ECG (EKO) to
determine the presence of low EF in more than 50,000 patients.
The protocol found AUROC, sensitivity, specificity, and
accuracy of 0.93%, 86.3%, 85.7%, and 85.7%, respectively.
They also found some degree of prediction of future dysfunction:
those with a positive AI screen were 4 times more likely to
develop ventricular dysfunction in the near future [35].

Shandhi et al [31] compared seismocardiographic data obtained
with a wearable sensing patch to objective measurements of
pulmonary artery mean pressure and pulmonary capillary wedge

pressure following vasodilator infusion during a right heart

catheterization, finding reasonable R2 accuracy (using the
Cardiosense technology). These devices use seismocardiological
signals in conjunction with ECG signals, thus requiring a
hardware device approved by the US Food and Drug
Administration (FDA) that must be purchased and maintained.
By relying on physics instead of traditional machine learning,
a tele-stethoscope does not require the ECG component, making
it possible to perform similarly to these more expensive
technologies with only an ordinary mobile phone.

One group used computerized acoustic cardiography to detect
the third and fourth heart sounds along with systolic time
intervals to develop a left ventricular dysfunction index to
predict ventricular dysfunction [12]. Their equipment also
consisted of an accessory device for a normal ECG machine.
Kang et al [36] studied 46 participants to determine the
feasibility of phone recordings for detecting heart sounds.
Constrained by the presence of 35% of recordings being
uninterpretable, the authors found acceptable sensitivity
(81%-94%), specificity (79%-100%), positive predictive value
(83%-100%), and negative predictive value (82%-92%), with
variance depending on which phone was used [36].

Another group tested EF estimation with a novel acoustic-based
device (vibration response imaging) that detects low-frequency
acoustic signals (10 Hz-70 Hz). The device found sensitivity
and specificity around 80%, but the protocol examined requires
36 microphones and a simultaneous ECG [14]. A study using
acoustic cardiography in cohorts with and without atrial
fibrillation found systolic dysfunction with moderate sensitivity
and high specificity (Audicor; Inovise Medical, Inc) [37].
Researchers added sensors to a standard ECG machine to
determine 2 systolic parameters: electromechanical activation
time and systolic dysfunction index. Another study of the same
Audicor device found sensitivity around 80% and specificity
in the high 50% range depending on the parameter used [16].

None of these novel approaches show promise for monitoring
or diagnosing HF using only mobile phone hardware. Most of
the technologies implement proprietary devices and integrate
with phones only to transmit data to providers. Tele-stethoscope
allows real-time detection of data and rapid transmission of
findings directly to clinicians to assist in decision-making. We
estimated SV due to its use in approximating cardiac output
(SV × heart rate). Noninvasive detection of cardiac output could
enhance care for ambulatory and admitted patients. Additionally,
SV may represent a parameter that could help distinguish
different categories of HF [38].

While this study used research volunteers to obtain the sound
recordings, the facile approach allows patients and family
members to obtain recordings that can be transmitted with ease
using Wi-Fi or cellular signals. This would bring HF diagnosis
and monitoring to remote and underserved areas all over the
world, to more than 8 billion mobile phones worldwide [11].
Future work will involve matching to other HF diagnostic
parameters, such as measures of preserved ejection fraction
(early to late diastolic transmitral flow velocity [E/A] to assess
diastolic function, and E to early diastolic mitral annular tissue
velocity [E/e'] to estimate left ventricular filling pressures) and
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pulmonary disease markers (spirometry, chronic obstructive
pulmonary disease severity scores, and emphysematous changes
on computed tomography imaging). In 1 earlier large-scale
human study, this technology was used to match phone acoustics
to COVID-19 polymerase chain reaction test results to produce
a reliable device for disease detection [39].

Limitations
This work has important limitations. Although relatively small,
the sample size was sufficient to demonstrate the feasibility of
reproducing echocardiogram EF and SV findings. Additionally,
the sample included patients in 2 different cities at 2 different
medical centers, 1 inpatient and 1 outpatient. Further studies
could center on larger sample sizes and more representative
(race, sex, and living areas) recruiting. In a true patient
diagnostic model, the best available gold-standard test results,
confirmed by diagnosis, would be used rather than
echocardiogram reports alone. The enrollment was based on a
convenience sample, creating potential selection bias. In the
phase 2 study, larger sample sizes will make possible the test
or train analysis to demonstrate reproducibility. Larger sample
sizes would also make it possible to add more features, if
necessary, and reduce the population margin of error.

According to the FDA, a mobile medical app is “a mobile app
that incorporates device software functionality that meets the
definition of device in section 201(h) of the FD&C Act 11; and
either is intended to be used as an accessory to a regulated
medical device; or to transform a mobile platform into a
regulated medical device” [40]. According to this language,
mobile phones and stethoscopes can be considered equivalent.
Regarding applicability, the research team views this as a
strength rather than a limitation, opening the technology to
resource-poor settings all around the world. This would allow
fully impromptu data collection in situations where advanced
diagnostic equipment is not available and even a physical exam
is not possible (telehealth). Phones must be placed directly on
the skin and have no motion across the skin, a consideration of
importance in future studies where patients will take their
measurements. Of note, the fidelity of recordings from this study
was not disrupted by background noise; future use in other
settings such as ambulance or combat will likely not be limited
by ambient noise. Additionally, multiple phone brands were

used in the study without any discernible impact on the
algorithms.

The comparison of recordings to echocardiogram opens the
potential for inaccuracy as transthoracic echocardiogram can
have somewhat large margins of error, especially related to EF.
The 40% threshold for EF is intended to reduce the rate of false
positives. Future work in larger cohorts will allow for a more
granular separation of participants. Ongoing work includes
recruitment in right heart catheterization and cardiac magnetic
resonance imaging patients. Additionally, not all participants
at site 1 had the index echocardiogram on the same admission
during which acoustic recordings were obtained, but all had the
echocardiogram within a 30-day window. Results found no
difference in accuracy based on the clinical site or the time of
echocardiogram. We did not collect data on the volume status
of the participants in the study; acoustic data could potentially
vary based on volume status.

It should be noted that no viable features were produced through
spectral analysis. One possible explanation is that spectral
analysis was unable to manage the nonlinearity of the acoustic
signals. Another possible explanation is that it inadvertently
created false neighbors among different physical phenomena
that happen to share common spectral bands such as
low-frequency blood and muscle sounds. Purely from a physics
point of view, the features can be interpreted as representing
descriptions of fluid and thermodynamics. Although the features
used in the modeling are “dynamics-based,” and apparently
useful in the modeling, their exact physiological interpretation
is unknown. At this stage, all that can be said about these
features is that they represent some novel interpretation of
hemodynamics as “dynamics.”

Conclusions
Cardiovascular disease and in particular HF continues to have
high morbidity, mortality, and cost worldwide. In this pilot
cohort of patients from 2 clinical sites in 2 different cities,
passive acoustic recording with mobile phones allowed accurate
estimation of EF and SV. No previous study or available
technology combines mobile phones and acoustic recording in
HF diagnosis or monitoring that could be deployed to
low-resource settings. The technology represents a novel and
potentially far-reaching tool for the screening and management
of patients with known and undiagnosed HF.
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HF: heart failure
IRB: institutional review board
LVEF: left ventricular ejection fraction
NIH: National Institutes of Health
SV: stroke volume
TSD: Time Series Dynamics
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