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Abstract
Background: Stroke is a major cause of death and disability worldwide. Identifying individuals who would benefit most
from preventative interventions, such as antiplatelet therapy, is critical for personalized stroke prevention. However, traditional
methods for estimating treatment effects often focus on the average effect across a population and do not account for individual
variations in risk and treatment response.
Objective: This study aimed to estimate the individualized treatment effects (ITEs) for stroke prevention using a novel
combination of Dragonnet, a causal neural network, and conformal inference. The study also aimed to determine and validate
the causal effects of known stroke risk factors—hypertension (HT), diabetes mellitus (DM), dyslipidemia (DLP), and atrial
fibrillation (AF)—using both a conventional causal model and machine learning models.
Methods: A retrospective cohort study was conducted using data from 275,247 high-risk patients treated at Ramathibodi
Hospital, Thailand, between 2010 and 2020. Patients aged >18 years with HT, DM, DLP, or AF were eligible. The main
outcome was ischemic or hemorrhagic stroke, identified using International Classification of Diseases, 10th Revision (ICD-10)
codes. Causal effects of the risk factors were estimated using a range of methods, including: (1) propensity score–based
methods, such as stratified propensity scores, inverse probability weighting, and doubly robust estimation; (2) structural causal
models; (3) double machine learning; and (4) Dragonnet, a causal neural network, which was used together with weighted
split-conformal quantile regression to estimate ITEs.
Results: AF, HT, and DM were identified as significant stroke risk factors. Average causal risk effect estimates for these risk
factors ranged from 0.075 to 0.097 for AF, 0.017 to 0.025 for HT, and 0.006 to 0.010 for DM, depending on the method used.
Dragonnet yielded causal risk ratios of 4.56 for AF, 2.44 for HT, and 1.41 for DM, which is comparable to other causal models
and the standard epidemiological case-control study. Mean ITE analysis indicated that several patients with DM or DM with
HT, who were not receiving antiplatelet treatment at the time of data collection, showed reductions in total risk of −0.015 and
−0.016, respectively.
Conclusions: This study provides a comprehensive evaluation of stroke risk factors and demonstrates the feasibility of using
Dragonnet and conformal inference to estimate ITEs of antiplatelet therapy for stroke prevention. The mean ITE analysis
suggested that those with DM or DM with HT, who were not receiving antiplatelet treatment at the time of data collection,
could potentially benefit from this therapy. The findings highlight the potential of these advanced techniques to inform
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personalized treatment strategies for stroke, enabling clinicians to identify individuals who are most likely to benefit from
specific interventions.
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Introduction
Stroke is a leading cause of death and disability, present-
ing both personal and economic burdens [1]. Astonishingly,
many epidemiological studies have identified important risk
factors of stroke occurrence, especially through the use of
cohort studies [2], and randomized controlled trials (RCTs)
have identified the impact of treating these risk factors.
While RCTs control for confounding factors through study
design, cohort studies attempt to address these factors using
statistical methods. However, the possibility of residual
confounding remains, highlighting the need for improved
analysis approaches [3].

Frameworks of causal effect have largely been confined to
Pearl’s [4] structural causal models (SCMs) and Rubin’s [5]
potential outcome models (POMs) [6]. SCMs evaluate causal
relationships between variables using a directed acyclic graph
defined by a set of structural equations, which consider the
influence of each variable by its parents, or causes, along
with its probability distribution. In addition, SCMs can also
assess the effect of interventions by estimating how chang-
ing one unit of treatment (or risk) leads to a change in
outcome [7]. Conversely, POMs focus on the concept of
counterfactuals, specifically what would have happened if
an individual had been exposed to a different treatment or
risk [8]. Consequently, this approach estimates 2 potential
outcomes (POs) for each individual: if the individual had
received the treatment and if they had not. Subsequently,
Rosenbaum and Rubin [9] developed propensity scores to
reflect the probability of an individual being assigned to
a certain treatment group. Therefore, these estimates are
only considered valid if the 2 specific conditions—strong
ignorability and positivity—are met. Statistical methods have
been developed based on POMs and propensity scores,
including matching [10], stratified propensity score (SPS)
[11], inverse probability weighting (IPW) [12,13], and doubly
robust estimation (DRE) [14-16]. Recently, nonconventional
statistical models such as double machine learning (DML),
meta-learners, and neural networks have also been developed
to estimate unbiased causal effects without requiring strong
underlying assumptions [14]. Causal neural networks (NNs),
including TARNet and Dragonnet, learn by sharing input
data to estimate both factual and counterfactual outcomes.
This approach is currently an active area of research [17-19].
Dragonnet also uses “learned data” to predict propensity
scores by tradeoff with prediction quality, which yields better
average treatment effect (ATE) estimates [18].

Current causal modeling has shifted its focus from the
ATE, which measures the treatment effect averaged across
the entire study population, to the conditional average

treatment effect (CATE), which assesses the ATE condi-
tional on particular variables, such as sex, age, and other
covariates. More recently, the focus has further evolved to
the individualized treatment effect (ITE), which estimates
the treatment effect for a particular individual. CATE has
inherent variability depending on which covariate the model
is conditioned on [20]. However, estimating ITEs is chal-
lenging because it requires making assumptions about the
underlying individual data-generating process and the model
used to estimate the ITEs [17]. A statistical technique called
conformal inference may appropriately estimate the confi-
dence intervals of ITEs by accounting for the uncertainty
in their estimation. Despite being a novel technique, it has
shown promise [20]. Conformal inference uses nonconform-
ity scores that measure the degree of disagreement between
the estimated and observed outcomes, to provide a confi-
dence interval or a precision of estimation [21-23]. Therefore,
we conducted this study to estimate the CATE of stroke
occurrence based on real-world clinical data using Dragon-
net NN models. Additionally, ITE was estimated to identify
individuals at high risk of stroke who may benefit from
lowering risk factors by combining the strengths of Dragon-
net and conformal inference approaches. To the best of our
knowledge, no prior studies have employed these methods in
combination to estimate causal effects in a clinical setting.

Methods
Overview
The study population included a retrospective cohort of
patients who were at high risk for stroke and had been
treated and followed up at Ramathibodi Hospital, Thailand,
between 2010 and 2020. Hospital records and the Interna-
tional Classification of Diseases, 10th Revision (ICD-10)
classification system were used to identify patients. Patients
were eligible if they were aged >18 years and had one
or more of the following conditions: hypertension (HT;
ICD-10 code I10-I16), diabetes mellitus (DM; ICD-10 code
E08-E13), dyslipidemia (DLP; ICD-10 code E78), and atrial
fibrillation (AF; ICD-10 code I48). Patients were excluded
if they had a stroke on their first visit or only had one visit
during the study period. The main outcome measured in the
study was the occurrence of ischemic or hemorrhagic stroke,
which was identified using the ICD-10 codes I63 and I61,
respectively.

Patients were followed up from their index date (i.e., the
date they were identified as high-risk patients) until they
progressed to stroke, were lost to follow-up, or were stroke-
free at the end of the study (December 31, 2020). Patients
who were lost to follow-up or stroke-free at the end of

JMIR CARDIO Lolak et al

https://cardio.jmir.org/2025/1/e50627 JMIR Cardio 2025 | vol. 9 | e50627 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/50627
https://cardio.jmir.org/2025/1/e50627


the study period were censored on their last visit date or
at the end of the study. A causal diagram was constructed
(Figure 1), and potential predictors of stroke were collected,
including age, sex, BMI, chronic kidney disease (CKD), AF,
HT, DM, and DLP. HT, AF, and DM were considered as
mediators, whereas the remaining variables were covariates in
the models. A software library called DoWhy, now incorpora-
ted into PyWhy (Python Software Foundation), was used to
construct models for stratification, IPW, DRE, and DML [24].
Parameters of all estimators were set by default in the DoWhy
package. The number of strata in the stratification method
was automatically determined [25]. The weighting scheme in
IPW was set to default inverse propensity score. For DRE,
the regression and propensity models were specified as lasso
and logistic regression, respectively. For DML, linear and
nonlinear cross-fitted models were applied to the outcome
model (lasso and Extreme Gradient Boosting [XGBoost]),
propensity model (logistic regression and XGBoost), and

final model (linear regression and lasso). Estimands of each
risk pathway were defined by PyWhy from the input causal
graph. Graphical causal model–based inferences from the
DoWhy library were used for medication analysis to quantify
the causal effects of direct and indirect pathways, termed
natural direct effect (NDE) and natural indirect effect (NIE),
respectively [4,26]. NDE Y1,M(0)x − Y0,M(0)x  refers to the
change in the outcome of an individual when they are
exposed to a specific treatment Y1, compared to another
treatment Y0, while keeping the mediator variable constant
at the baseline value or reference treatment M(0). In contrast,
NIE Y1,M 1x − Y1,M 0x  refers to the difference between the
counterfactual outcome value when treatment Y1 is fixed and
the mediator assumes a certain value at a particular treatment
M(1) and the counterfactual outcome value when the mediator
assumes the same value at the baseline M(0) [27].

Figure 1. Causal diagram of patients at risk of stroke occurrence. AF: atrial fibrillation; CKD: chronic kidney disease; DLP: dyslipidemia; DM:
diabetes mellitus; HT: hypertension.

The Dragonnet NN was used to estimate PO and propensity
scores. The architecture of Dragonnet was based on previous
work (Figure 2) [18]. It employs a deep net to create a
representation layer ɸ(X) ∈ ℝᴾ, which is used to forecast
outcomes for both the treatment Ŷ(1) and control groups Ŷ(0).
It utilizes 2 hidden layers for each outcome model while a
basic fully connected layer with a sigmoid function is used for

the propensity score (ε). CATE was estimated by subtract-
ing treatment (risk) and control PO for each risk factorY1x − Y0x ∣ Z  and risk ratios were estimated by division of
PO (Y1xY0x Z); Y₁ is the PO for the risk group, Y₀ is the PO for
the control group, x is an interested factor, and Z are other
covariates.
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Figure 2. Dragonnet architecture. X is the covariates, ɸ(X) is a learned representation of X. Ŷ(1) is the predicted outcome of the treatment (risked)
group. Ŷ(0) is the predicted outcome of the control group. ε is the estimated propensity score. CÂTE is the conditional average treatment effect
computed by Ŷ(1)–Ŷ(0).

To accurately estimate the ITE, it is mandatory for the
conditional independence assumption to hold, especially
considering the unequal distribution of covariates between
factual and counterfactual outcomes of the treatment and
control groups, commonly known as covariate shift. To
address this challenge, we employed a nested method
of weighted split-conformal quantile regression (CQR)
to estimate the ITE [20,23] by incorporating antiplatelet
medications as a treatment for stroke prevention. POs were
estimated using quantile loss setting α at .05. The dataset
was split evenly into training and evaluation sets; Multime-
dia Appendix 1 shows the entire algorithm. All risk factors
and covariates were similar between models, considering
antiplatelet medication as a treatment and stratified by risk
factor Yantiplatelets = 1x − Yantiplatelets = 0x Z , with x represent-
ing the risk factors of interest (i.e., HT, DM, and DLP) and
Z representing other covariates. AF was not included as a
stratum for the estimation of ITE in this example since it is
not an indication for the prescription of antiplatelet therapy,
but it remained a covariate.

Ethical Considerations
The data were anonymized to ensure confidentiality and
privacy protection. This study was approved by the Human
Research Ethics Committee, Faculty of Medicine Ramathi-
bodi Hospital, Mahidol University (COA. MURA2021/255).
The committee waived the need to obtain consent for the
collection, analysis, and publication of the retrospectively
obtained and anonymized data for this noninterventional
study.

Results
A total of 275,247 high-risk patients were included in
the cohort. Among them, 9659 patients developed stroke,
resulting in an incidence of 3.5% (95% CI 3.4-3.6). The
follow-up rate for the study population was 80% (7752/9659).

Baseline demographic and risk factors were compared
between 9659 stroke patients and 265,588 nonstroke patients
(Multimedia Appendix 2). Stroke patients had a mean age
of 64.7 years and were more likely to be male. Stratifi-
cation by risk indicated that 13% of AF patients, 4% of
HT patients, 4% of DM patients, and 4% of DLP patients

experienced stroke in contrast to only 2% of non-AF patients,
1% of non-HT patients, 3% of non-DM patients, and 3% of
non-DLP patients, who developed stroke.

Causal effects of mediators including HT, DM, CKD,
and AF on stroke were estimated based on the causal
diagram in Figure 1. The estimands report as probability of
stroke given the risk factors, P(Stroke | risk factors), are as
follows: P(Stroke | HT, age, DM, DLP) for HT; P(Stroke |
AF, age, HT) for AF; P(Stroke | age, DLP) for DLP; and
P(Stroke | age, DM, BMI) for DM (Multimedia Appendix
3). For the POM approach, the SPS estimator showed AF
as the highest risk of stroke, followed by HT, DM, and
DLP with risk estimates of 0.084 (95% CI 0.079-0.088),
0.019 (95% CI 0.015-0.020), 0.010 (95% CI 0.008-0.010),
and 0.0015 (95% CI −0.0002 to 0.0027), respectively. IPW
yielded similar, albeit slightly higher, corresponding risks of
0.092 (95% CI 0.089-0.096), 0.024 (95% CI 0.022-0.025),
0.010 (95% CI 0.008-0.010), and 0.001 (95% CI −0.0005
to 0.0025), respectively. Comparable results were observed
in the DRE analysis, with a similar trend of risk effect
estimates of 0.082 (95% CI 0.0849-0.0871), 0.025 (95% CI
0.0243-0.0257), 0.008 (95% CI 0.0057-0.0063), and 0.0006
(95% CI 0.0001-0.0011), respectively.

The SCM estimation also yielded similar trends to the
POM approach, in which the risk of stroke was 0.096 (95%
CI 0.0948-0.0972), 0.021 (95% CI 0.0204-0.0216), 0.007
(95% CI 0.0067-0.0073), and 0.0005 (95% CI 0.0004-0.0006)
for AF, HT, DM, and DLP, respectively. Mediation analysis
indicated the NDE of HT to be 0.020 (95% CI 0.019-0.021)
and the NIE to be 0.0027 (95% CI 0.0025-0.0029). NDE
and NIE for DM and DLP were both modest and consistent
with the findings from other models. Figure 1 illustrates
the pathways through which the mediators act: HT mediates
through CKD and AF, DM mediates through HT and CKD,
while DLP mediates through HT.

In the context of DML, the nonparametric model esti-
mates were slightly smaller than those for the linear model,
with risks of 0.086 (95% CI 0.0849-0.0871), 0.015 (95%
CI 0.0145-0.0155), 0.006 (95% CI 0.0057-0.0063), and 0.0
(95% CI −0.0001 to 0.001) for AF, HT, DM, and DLP,
respectively, whereas the corresponding linear model estimate
risks were 0.097 (95% CI 0.096-0.098), 0.023 (95% CI
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0.0223-0.0236), 0.009 (95% CI 0.0087-0.0093), and 0.002
(95% CI 0.0018-0.0022).

Dragonnet estimated the causal effects of AF, HT, DM,
and DLP on stroke as 0.075 (95% CI 0.074-0.076), 0.017
(95% CI 0.0169-0.0170), 0.01 (95% CI 0.009-0.010), and
−0.002 (95% CI −0.0022 to 0.0021), with causal ratios
of 4.56 (95% CI 4.56-4.57), 2.44 (95% CI 2.41-2.46),
1.41 (95% CI 1.21-1.60), and 0.856 (95% CI 0.855-0.858),
respectively. The odds ratios from the logistic regression
models were respectively 3.34 (95% CI 2.68-3.75), 2.56 (95%
CI 2.33-2.80), 1.16 (95% CI 1.05-1.30), and 1.00 (95% CI
0.8-1.4). Details are provided in Multimedia Appendix 3 for
comparison.

The influence of risk reduction for individual patients who
did not receive antiplatelet therapy, had they been given
the medication (counterfactuals of nontreatment ITEs), was
examined using weighted split-CQR. As shown in Multime-
dia Appendix 4, three of the samples (3/50, 6%) appear
to have potentially benefited from antiplatelet treatment,
indicating that a considerable number of patients might have
experienced a positive impact on their stroke risk reduction
had they received the medication. The mean ITEs indicated
that several patients with DM or DM with HT were not
currently receiving antiplatelet treatment and would be more
likely to benefit if they had received it, with reduction of
total risk as −0.015 (IQR −0.011 to −0.018) and −0.016 (IQR
−0.015 to 0.022) among each group, respectively (Figure 3).

Figure 3. Box plot representing the mean individual treatment effect for patients with different risk factors who had not been taking antiplatelet
medication, illustrating the potential impact on stroke risk reduction if they had received antiplatelet therapy. DLP: dyslipidemia; DM: diabetes
mellitus; HT: hypertension; ITE: individual treatment effect.

Discussion
Principal Findings
We estimated the causal influences of risk factors associated
with stroke outcomes using multiple approaches that included
SPS, IPW, DRE, SCM, and mediation analysis, in addition
to DML and Dragonnet NNs. Our findings indicate strong
positive causal effects associated with AF and HT on stroke
development, with DM exerting a weaker effect. DLP, in
contrast, had little effect. Furthermore, our analysis suggests
that patients with both DM and HT not currently in receipt of
antiplatelet treatments would be the most likely beneficiaries
of antiplatelet therapy based on the mean ITEs.

The results from the different estimators generally
demonstrated consistency, although there were slight
variations in specific point estimates and confidence intervals
varied slightly. The estimated causal effect derived from
various methods using real-world observational data is
comparable with standard cohort epidemiological studies
using more traditional logistic regression approaches [28,29].

Comparison to Prior Works
SPS is a widely used method that minimizes confounding
bias by adjusting baseline covariates and confounding factors
and estimating treatment effects by stratum. However, SPS is
sensitive to the number of strata and features that affect both
treatment and outcome (confounding factors), which can lead
to bias in the causal effect estimate [30-33]. In addition, some
strata may be sparsely populated, making the ATE hard to
define and more prone to bias [34]. Rosenbaum and Rubin
[9] originally proposed dividing the strata into 5 levels and
then subsequently automatically splitting the strata until the
balance in the numbers of treated and control observations
was achieved [25].

IPW attempts to reduce confounding of the ATE by
weighting the sample with the inverse propensity score
and by balancing the distribution of the covariates between
the treated and untreated groups [35], thereby avoiding
the problem of data sparsity that may be present in SPS,
particularly with small sample sizes. However, there is a
reliance on the assumption that the propensity score model
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correctly captures all confounding factors, which, if incorrect,
may bias the ATE. Additionally, IPW is more sensitive to
the model and variable selection for estimating the propensity
scores, with small differences in estimated propensity scores
potentially leading to large differences in estimated causal
effects [36]. Finally, IPW may imprecisely estimate treatment
effects if a sample size is small, leading to a propensity score
close to 0 or 1 [36,37].

DRE combines propensity score and outcome regres-
sion models [38], which can lead to improvements in the
robustness of model specification by allowing one of the
two treatment and outcome models to be miss-specified but
still provide a consistent estimation [39]. The challenge is
to validly model either the propensity score or the outcome
model; it may be tempting to use modern machine learn-
ing approaches or nonparametric models in DRE, but this
may lead to bias if the functions are too complex, leading
to overfitting [40,41]. DML was developed to address the
bias from regularization and overfitting in estimating the
parameter of interest, which arises when naively inserting
machine learning estimators into the estimation equation.
This approach consists of two critical components: (1) the
use of Neyman-orthogonal moments or scores to estimate
the parameters and (2) the application of cross-fitting, which
provides an efficient form of data-splitting. By using both
elements, DML minimizes the impact of regularization bias
and overfitting on parameter estimation; this also extends to
nonparametric models [14].

Applying POMs (eg, SPS, IPW, DRE) relies heavily on
the assumption that the treatment assignment is independent
of the PO given the observed covariates, which is known
as “unconfoundedness” or the conditional independence
assumption. If this assumption does not hold, the estimated
causal effect will be biased. In contrast, SCMs facilitate the
modeling of complex relationships between multiple causes
and effects in the presence of latent or unobserved varia-
bles [4,42]. In addition, SCMs can be considered as coun-
terfactual predictions of interventions, which can be useful
in applications such as causal inference in experimental or
observational studies [43-46]. However, SCMs are limited by
the assumption of independence between variables and may
require conceptualized causal relationship mechanisms.

The benefit of using NNs to estimate causal effects is
their flexibility and power to handle high-dimensional and
complex data. Shalit et al [17] introduced TARNet by sharing
information between the PO of treatment and control groups,
which is different from the previous model that separated
the training data. More recently, Dragonnet was developed
by combining propensity scores with targeted regularization,
resulting in more accurate inference [18]. Dragonnet is
considered more robust with very low or high propensity
scores but has several limitations including sensitivity to
choice of architecture and hyperparameters, dealing with only
a single set of features at a time, and difficulty of interpre-
tation [18]. Despite some limitations, Dragonnet’s benefits
surpass these drawbacks, making it an attractive approach for
estimating causal effects in complex real-world data.

Strengths and Limitations
A critical aspect of causal inference, particularly in estimat-
ing CATE, involves certain assumptions, notably ignorability
and positivity. Strong ignorability necessitates the observation
and adjustment for all confounding variables that influence
both the treatment and the outcome, while positivity ensures
that every patient has a nonzero probability of receiving
each treatment. In our study, we believe these assump-
tions are reasonably satisfied. We included a comprehensive
set of covariates, such as age, sex, BMI, chronic kidney
disease, and relevant comorbidities (HT, DM, DLP, and
AF), which are well-documented factors influencing stroke
risk and treatment decisions. However, we acknowledge
that there might be unmeasured confounders not captured
in our dataset. Regarding the decision on antiplatelet drug
administration, we utilized detailed patient records from
Ramathibodi Hospital, ensuring a thorough assessment of
factors influencing treatment. Nonetheless, we recognize the
potential for residual confounding and the inherent limita-
tions of observational data. Future studies could benefit
from incorporating more granular clinical data and leveraging
advanced causal discovery methods to further validate these
assumptions.

Causal effects can vary between individuals, which
necessitates the estimation of ITEs. Treatment effects can
vary between individual patients; therefore, applying a single
treatment effect as CATE to all individual patients is
inappropriate [47,48] as some patients may gain more or
less benefit from treatments. Thus, the estimation of ITE to
identify at-risk patients most likely to benefit from treat-
ment is a major goal for stratified and precision medicine
approaches. Estimating ITEs requires larger sample sizes,
as individual-level estimates are less precise than aggregate-
level estimates [49]. A covariate shift may result from
unobserved counterfactual data but this is minimized using
a weighted split-CQR approach [23].

We believe that the clinical implications of our study
are significant, as understanding the causal relationships
and individual treatment effects of stroke risk factors can
directly influence patient care by providing more precise and
personalized risk assessments. Additionally, we can conduct
reviews and quality assessments of current patients in the
clinic to determine who should receive further treatment.
These methods enable clinicians to identify high-risk patients
who would benefit most from targeted interventions, like
antiplatelet therapy, thereby optimizing treatment strategies
and improving patient outcomes. The use of real-world data
ensures that our findings apply to everyday clinical practice.

Our study has some limitations. First, we used real-world
data rather than RCT data, thus some important covariates
were not previously planned, measured, and collected as part
of routine clinical evaluation and were therefore unavailable
for ITE estimation. Second, we acknowledge the possibil-
ity of unmeasured confounders in the observational data-
set. Future studies could benefit from incorporating more
granular clinical data, such as detailed medication records,
laboratory results, and lifestyle factors, to mitigate potential
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confounding. Third, the models used for estimating ITEs
were trained and validated in only a single setting, thereby
limiting their generalizability. Future research should focus
on validating the models in diverse settings with different
patient populations or hospitals. This external validation
would help to determine whether the models’ predictive
performance and the estimated ITEs hold true across various
contexts.
Conclusion
This study provides comprehensive causal estimates of
AF, HT, DLP, and DM on stroke using various
advanced statistical and machine learning methodologies. The
consistent results across multiple analytical approaches and
this study’s alignment with a standard cohort study rein-
force the robustness of our findings. AF and HT emerged
as significant risk factors for stroke, with DM showing a
moderate effect, while DLP had minimal impact. Notably,

the use of Dragonnet and conformal inference techniques
allowed us to accurately estimate ITEs, highlighting that
several high-risk patients who did not take antiplatelets at
the time of data recorded, particularly those with DM or DM
combined with HT, could potentially benefit from antiplatelet
therapy. This suggests that personalized treatment strategies
could be pivotal in reducing stroke risk among these patients.

The findings underscore the significance of individual-
ized risk assessment and treatment personalization in clinical
settings. Future research should focus on integrating these
advanced causal inference models into routine clinical
practice to enhance treatment outcomes for high-risk stroke
patients. Additionally, the use of real-world data provides
valuable insights but also presents challenges related to
unmeasured confounding and data quality. Addressing these
challenges in future studies will be crucial for advancing our
understanding and improving stroke management strategies.
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