
Original Paper

Predicting Atrial Fibrillation Relapse Using Bayesian
Networks: Explainable AI Approach

João Miguel Alves1,2, MSc; Daniel Matos3, MD; Tiago Martins1,2, MSc; Diogo Cavaco3, MD; Pedro Carmo3, MD;
Pedro Galvão3, MD; Francisco Moscoso Costa3, MD; Francisco Morgado3, MD; António Miguel Ferreira3, MD;
Pedro Freitas3, MD; Cláudia Camila Dias1,2, PhD; Pedro Pereira Rodrigues1,2*, PhD; Pedro Adragão3*, PhD
1Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
2CINTESIS @ RISE – Center for Health Technology and Services Research, Porto, Portugal
3Cardiology and Electrophysiology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Carnaxide, Portugal
*these authors contributed equally

Corresponding Author:
João Miguel Alves, MSc
Department of Community Medicine, Information and Health Decision Sciences
Faculty of Medicine, University of Porto
Rua Dr Plácido da Costa
Porto, 4200-450
Portugal
Phone: 351 22 551 3622
Email: jalves@med.up.pt

Abstract
Background: Atrial fibrillation (AF) is a prevalent arrhythmia associated with significant morbidity and mortality. Despite
advancements in ablation techniques, predicting recurrence of AF remains a challenge, necessitating reliable models to identify
patients at risk of relapse. Traditional scoring systems often lack applicability in diverse clinical settings and may not incorpo-
rate the latest evidence-based factors influencing AF outcomes. This study aims to develop an explainable artificial intelligence
model using Bayesian networks to predict AF relapse postablation, leveraging on easily obtainable clinical variables.
Objective: This study aims to investigate the effectiveness of Bayesian networks as a predictive tool for AF relapse following
a percutaneous pulmonary vein isolation (PVI) procedure. The objectives include evaluating the model’s performance using
various clinical predictors, assessing its adaptability to incorporate new risk factors, and determining its potential to enhance
clinical decision-making in the management of AF.
Methods: This study analyzed data from 480 patients with symptomatic drug-refractory AF who underwent percutaneous
PVI. To predict AF relapse following the procedure, an explainable artificial intelligence model based on Bayesian networks
was developed. The model used a variable number of clinical predictors, including age, sex, smoking status, preablation
AF type, left atrial volume, epicardial fat, obstructive sleep apnea, and BMI. The predictive performance of the model was
evaluated using the area under the receiver operating characteristic curve (AUC-ROC) metrics across different configurations
of predictors (5, 6, and 7 variables). Validation was conducted through four distinct sampling techniques to ensure robustness
and reliability of the predictions.
Results: The Bayesian network model demonstrated promising predictive performance for AF relapse. Using 5 predictors
(age, sex, smoking, preablation AF type, and obstructive sleep apnea), the model achieved an AUC-ROC of 0.661 (95% CI
0.603‐0.718). Incorporating additional predictors improved performance, with a 6-predictor model (adding BMI) achieving an
AUC-ROC of 0.703 (95% CI 0.652‐0.753) and a 7-predictor model (adding left atrial volume and epicardial fat) achieving an
AUC-ROC of 0.752 (95% CI 0.701‐0.800). These results indicate that the model can effectively estimate the risk of AF relapse
using readily available clinical variables. Notably, the model maintained acceptable diagnostic accuracy even in scenarios
where some predictive features were missing, highlighting its adaptability and potential use in real-world clinical settings.
Conclusions: The developed Bayesian network model provides a reliable and interpretable tool for predicting AF relapse in
patients undergoing percutaneous PVI. By using easily accessible clinical variables, presenting acceptable diagnostic accuracy,
and showing adaptability to incorporate new medical knowledge over time, the model demonstrates a flexibility and robustness
that makes it suitable for real-world clinical scenarios.
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Introduction
Atrial fibrillation (AF), the most common sustained cardiac
arrhythmia [1], poses significant challenges in the clinical
management and prediction of disease progression. Currently,
the ATLAS score [2] provides a reliable risk estimate to
predict the rate of AF recurrence after a pulmonary vein
isolation (PVI) procedure. However, it suffers from typical
limitations of clinical scores, such as the use of a fixed
number of independent variables for the prediction of a single
dependent variable, its static nature, and its inability to be
adjusted as new knowledge becomes available. All these
issues can be addressed by artificial intelligence (AI) models
based on machine learning algorithms, which can learn from
available data, be quickly updated with new data, and perform
complex calculations in a short time.

In recent years, such machine learning techniques have
emerged as powerful tools in various medical domains,
including cardiology [3,4]. There have been some recent
successful attempts to develop AI models to predict the
recurrence of AF after ablation procedure. However, despite
the good performance of those models, they either lack the
explainability required to allow their acceptance by health
care professionals [5,6], or share the same limitations of
medical scores discussed above [7]. In fact, although many
physicians have recognized that AI models may be useful
both for diagnosis and prognosis in medical practice, many
authors raise legitimate questions about the lack of explaina-
bility of some AI models [8,9].

Bayesian networks, despite being still poorly adopted
in health care, have gained popularity as clinical decision
support models in medicine due to their ability to han-
dle complex problems with causal dependencies, integrate
both data and domain knowledge, provide an interpretable
graphical structure, and support both diagnostic and prognos-
tic reasoning [10]. In addition, these models can be updated
with new medical knowledge, enabling the incorporation of
novel risk factors and advancements in the field of arrhyth-
mology. This adaptability and scalability make Bayesian
networks a promising tool for decision-making in medicine
and long-term monitoring of patients with AF.

This study aims to address key research gaps in the
prediction of AF relapse by developing a more reliable and
adaptable predictive model based on Bayesian networks.
Traditional medical scoring systems are limited by their
reliance on a fixed set of independent variables, which
reduces their generalizability across diverse patient popula-
tions. In addition, many existing AI models for AF predic-
tion lack the necessary explainability required to foster trust
and acceptance among health care professionals. To bridge
these gaps, this study makes several significant contributions.
First, it introduces a novel explainable AI model based
on Bayesian networks, which allows for the calculation of

conditional probabilities tailored to individual patient profiles,
thus enhancing both the interpretability of the predictions
and their clinical acceptance. Second, the study overcomes
the limitations of traditional scoring systems by offering
a dynamic and adaptable model that can incorporate new
risk factors and learn from evolving patient data, thereby
improving predictive accuracy over time. Third, the proposed
model demonstrates flexibility and robustness, making it
suitable for real-world clinical scenarios where incomplete
data may be present. Finally, by integrating this model
into clinical decision support systems, the study has the
potential to enhance decision-making processes and improve
patient outcomes in the management of AF. In this work,
we investigate the use of Bayesian networks to predict AF
relapse before a percutaneous PVI procedure and evaluate its
potential as a valuable clinical tool, with the primary aim of
improving clinical decision-making and patient care.

Methods
Study Population
All consecutive patients with symptomatic drug-refractory
AF undergoing cardiac computed tomography (CT) before
percutaneous PVI at Hospital Santa Cruz (Carnaxide,
Portugal) between November 2015 and July 2019 were
included in an observational registry used for this retro-
spective study. Patients with moderate or severe valvular
heart disease, left atrial thrombus, abnormal thyroid func-
tion, or contraindication to anticoagulation were excluded.
Baseline demographic and clinical characteristics, including
age, sex, height, weight, and presence of hypertension,
diabetes, smoking, and known coronary artery disease, were
recorded for all patients. AF was categorized as paroxysmal
if it self-terminated in less than 7 days, persistent if episodes
lasted ≥7 days or required cardioversion, or long-standing
persistent if AF was maintained for more than 12 months.
PVI Protocol
PVI was guided by electroanatomical mapping, using either
NavX (St Jude Medical) or CARTO (Biosense Webster)
systems. The right femoral vein was used as the preferred
vascular access, through which three catheter electrodes were
introduced: (1) a decapolar catheter, advanced through the
coronary sinus; (2) a variable circular mapping catheter,
placed in the pulmonary veins (PVs); and (3) an irrigated
contact force-sensing ablation catheter. Left atrial access
was established by a transseptal puncture. Radiofrequency
ablation was performed more than 5 mm from the PV ostia,
with continuous lesions enclosing the left and right pairs
of PVs. The treatment was considered successful if com-
plete electrophysiological PVI was achieved. When required,
electrical cardioversion was performed at the end of the
procedure. Oral anticoagulation was resumed 6 hours after
the ablation, maintained for 6 months, and then withdrawn or
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continued according to CHA2DS2-VASc criteria. Generally,
class I/III antiarrhythmic drugs were maintained in all patients
for the first 3 months after the procedure and then withdrawn
if there was no AF recurrence. A proton pump inhibitor was
also prescribed for the first month after the ablation.
Study End Point and Patient Follow-Up
The study end point was AF recurrence, defined as sympto-
matic or documented AF or other atrial arrhythmias, after a
3-month blanking period. Symptomatic AF was defined as
the presence of symptoms considered to be likely due to AF
episodes. Documented AF was defined by the presence of
at least one episode of AF lasting more than 30 seconds in
an ECG, 24-hour Holter monitoring, or event-loop record-
ing. The follow-up protocol comprised outpatient visits with
12-lead ECG and 24-hour Holter monitoring at the assistant
physicians’ discretion (typically at 6 and 12 months, and
yearly thereafter). Patients were encouraged to contact the

department if they experienced symptoms of AF recurrence.
Whenever clinical records were insufficient, a structured
telephonic interview was conducted. Patients who were kept
on antiarrhythmic drugs after the third month of follow-up
were not considered as failed ablation.
Population Characteristics
The analyzed sample comprised demographic and clinical
data from 480 patients who underwent follow-up after the
PVI procedure described above. The cohort included 295
(61.5%) men and 185 (38.5%) women, with a mean age of
61.1 (SD 11.5) years. The median duration of the follow-up
time of the patients was 392 (IQR 150‐674) days. For the
purpose of this study, all numeric variables in the dataset
(including age, BMI, left atrial volume, and epicardial fat)
were discretized into classes. Data characterization is shown
in Table 1.

Table 1. Demographic and clinical characteristics of the patients included in the study.
Characteristics Total (N=480), n (%) AFa relapse (n=166), n (%) AF-free (n=314), n (%)
Sex
  Female 185 (38.5) 55 (33.1) 130 (41.4)
  Male 295 (61.5) 111 (66.9) 184 (58.6)
Age (years)
  ≤45 57 (11.9) 9 (5.4) 48 (15.3)
  46‐65 234 (48.8) 84 (50.6) 150 (47.8)
  +65 189 (39.4) 73 (44) 116 (36.9)
Alcoholism 25 (5.2) 15 (9) 10 (3.2)
Smoking 135 (28.1) 57 (34.3) 78 (24.8)
Diabetes 46 (9.6) 16 (9.6) 30 (9.6)
High blood pressure 292 (60.8) 105 (63.3) 187 (59.6)
Obstructive sleep apnea 50 (10.4) 35 (21.1) 15 (4.8)
BMI
  Normal weight 151 (31.5) 35 (21.1) 116 (36.9)
  Overweight 218 (45.4) 74 (44.6) 144 (45.9)
  Obese 111 (23.1) 57 (34.3) 54 (17.2)
Atrial fibrillation
  Paroxysmal 374 (77.9) 98 (59) 276 (87.9)
  Persistent 106 (22.1) 68 (41) 38 (12.1)
Left atrium volumeb (ml/m2)
  [0 to 100] 168 (35) 39 (23.5) 129 (41.1)
  (100 to 125] 172 (35.8) 56 (33.7) 116 (36.9)
  (125 to inf) 140 (29.2) 71 (42.8) 69 (22)
Epicardial fatb (cm3)
  [0 to 2.7] 162 (33.8) 18 (10.8) 144 (45.9)
  (2.7 to 4.6] 166 (34.6) 48 (28.9) 118 (37.6)
  (4.6 to inf) 152 (31.7) 100 (60.2) 52 (16.6)

aAF: atrial fibrillation.
bSquare brackets indicate that the end point is included in the range, and parentheses indicate that the end point is not included in the range.

The variable preablation AF type represents the type of AF
identified in each patient before the ablation procedure, being
coded either as paroxysmal or persistent. The variable sex

is categorized as binary (female or male). All other binary
variables such as alcoholism, smoking, diabetes, high blood
pressure, and obstructive sleep apnea, were coded as logical
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(true or false), indicating the presence or absence of that
condition.

The variable AF relapse represents the identification
of postprocedural AF relapse in patients during follow-up
examinations, also coded as logical (true or false). It was
targeted as the outcome variable for this study.
Bayesian Network Model Training

Network Structure
Considering that Bayesian networks are probabilistic
graphical models made to represent knowledge, we started
by building our network structure primarily based on medical
knowledge in this field. In a first step, we opted to include
(whitelist) some of the most noteworthy known clinical
relationships between features, such as (1) known risk factors
for diseases expressed in the dataset, namely diabetes, high
blood pressure (HBP), and obstructive sleep apnea (OSA);
and (2) known predictive features of AF relapse, such as the
ATLAS score features (age, sex, smoking, persistent AF and
left atrial volume), as well as epicardial fat [11,12] and OSA
[13,14], as suggested by recent medical literature.

In the second step, we explored additional potential
relationships between features that could improve model fit
and better explain the observed data through data-driven
inference. To achieve this, we applied a score-based structure
learning method, using the Bayesian Information Criterion
(BIC) [15] as the scoring metric to be optimized. The
optimization of the BIC score was performed using a
hill-climbing algorithm [16]. This approach allowed us to
learn the remaining structure of the network, resulting in
a model that aligns with current medical knowledge while
effectively capturing the relationships between the variables.

Model Fitting
After the network structure was defined, a model could be
set to learn the conditional probabilities among all related
features. The parameters of the Bayesian network were thus
fit given the previously learned structure and the available
data, by means of a Bayesian posterior estimator with a
uniform before. With the model fitted in this fashion, it
was now possible to use the model to compute the estima-
ted probability that a given patient has AF relapse given
her clinical characteristics, for example, the model can be
asked “based on the available data, what is the probability
that a patient has AF relapse knowing that she is female,+65
years old and non-smoking.” Further examples of computed
conditional probabilities for AF relapse based on patients’
conditions are presented in the Results section.
Model Validation
Model validation was executed by out-of-sample testing to
assess the predictive performance of the model on unseen

data, as follows: from the full dataset, a random sample
was taken to be used as training data for the model. This
sample was used to train a conditional probabilities model, as
previously described. Following that, the remaining observa-
tions that were not included in the training set were used
as a test set, upon which the model predictions were tested.
For this testing step, we used the model to compute the
conditional probability of AF relapse for each patient in the
test set, and stored the prediction results for each tested
observation. This process was cyclically repeated multiple
times until each observation had been used for testing at
least 30 times. Finally, the calculated probability of AF
relapse for each patient was assumed to be the average of
all estimated probabilities for that patient. We then compared
the average predicted probability with the true observation of
AF relapse for each patient, and measured the performance
through the area under the receiver operating characteristic
curve (AUC-ROC).

Regarding the sampling process at the beginning of each
cycle, it is worth mentioning that the random samples
for training the model were obtained through one of four
different sampling processes: (1) bootstrapping, which on
average uses 63.2% of the observations for training, or (2)
hold-out, using fixed splitting ratios for the train and test of
80:20, (3) 90:10, and (4) 95:5, that is, with 80%, 90%, and
95% of the observations, respectively, being used for training
the model, and the remaining proportion used for testing.
With these processes, we aimed to assess the model’s ability
to generalize for unknown data and achieve a good estimator
for the generalization error.

This analysis was carried out using R (version 4.2.2; R
Foundation for Statistical Computing) [17], with packages
bnlearn [18] and pROC [19].

Ethical Considerations
This study adheres to the ethical guidelines of the Declara-
tion of Helsinki, including its later amendments. It has been
approved by the Health Ethics Commission of the Western
Lisbon Hospital Center, with the approval number 2117. All
patients provided written informed consent before this study
for both the procedure and the publication of any relevant
data. Patient confidentiality was maintained by removing any
personally identifiable information from all data used in this
study and its supplementary materials.

Results
Bayesian Network Structure
The Bayesian network structure defined by expert knowledge
and inference from data is represented in Figure 1.
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Figure 1. Bayesian network structure with nodes (boxes) representing the analyzed demographic and clinical variables. Grey nodes represent diseases
with known associated risk factors, namely diabetes, high blood pressure, and obstructive sleep apnea. Beige nodes represent the 5 atrial fibrillation
(AF) relapse predictors used by the ATLAS score, namely age, sex, smoking status, preablation AF type, and left atrial volume. The blue node
highlights AF relapse as the outcome variable. The arcs (arrows) represent the direction of influence of variables. Grey arcs represent manually
input relationships deriving from medical knowledge, ie, known risk factors. Orange colored arcs represent relationships discovered by the artificial
intelligence algorithm, suggesting other meaningful relationships between variables.

As noted in this representation, the model suggests relation-
ships that were not initially declared, such as BMI→Epicar-
dial fat, OSA→preablation AF type, and preablation AF
type→Left atrial volume. Furthermore, sex appears to be
related to active smoking, alcoholism, and BMI. All these
relationships are not surprising and are even supported by
the current medical literature, thus providing a reasonable
representation of clinical knowledge in this field. Regarding

the outcome variable AF relapse, the model did not find any
other relevant relations apart from those previously whitelis-
ted.

An alternative representation of this network is exhibited
in Figure 2, showing relative frequencies per class at each
node.
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Figure 2. Bayesian network structure with node-specific tables displaying relative frequencies per class at each node. AF: atrial fibrillation.

Conditional Probability Calculation
With each trained model, we calculated the conditional
probability of AF relapse for each patient in the test
set, considering their reported clinical conditions. These
probabilities were compared with the true values of AF
relapse for each patient and plotted in a receiver oper-
ating characteristic (ROC) curve, with cutoff values for
classification determined as those that maximize the Youden

J statistic. We tested in turns 7, 5, or 6 predictive features, as
explained in the sections to follow. For illustration purposes,
Table 2 presents a few examples of different combinations of
patients’ conditions and their calculated conditional probabil-
ity of AF relapse. These calculations were conducted for
hypothetical patients, while considering as predictors all 7
parent nodes of AF relapse as represented in the network
structure.

Table 2. Conditional probabilities of atrial fibrillation (AF) relapse for a sample of different combinations of hypothetical patients’ conditions.
Conditions are sorted from the most unlikely to experience AF relapse to the most likely to experience that outcome.

Sex
Age
(years)

Left atrium volumea
(ml/m2) Smoking active Persistent AF

Epicardial fata
(cm3) OSAb

Conditional probability
of AF relapse, % (95%
CI)

Male ≤45 [0 to 100] False Paroxysmal [0 to 2.7] False 7.5 (1.8-13.2)
Male 46‐65 (100 to 125] False Paroxysmal [0 to 2.7] False 10.1 (6.3-13.8)
Female ≤45 [0 to 100] False Paroxysmal [0 to 2.7] False 16.8 (7.4-26.1)
Male 46‐65 (125 to inf) False Paroxysmal (2.7 to 4.6] False 20.1 (14.3-26)
Male +65 (100 to 125] True Paroxysmal (2.7 to 4.6] False 25.2 (17.3-33.1)
Male 46‐65 (100 to 125] True Persistent [0 to 2.7] False 33.2 (18.4-47.9)
Male 46‐65 (100 to 125] False Paroxysmal (4.6 to inf) True 33.3 (16.4-50.3)
Male +65 (125 to inf) False Paroxysmal (2.7 to 4.6] False 33.3 (25.2-41.5)
Female 46‐65 [0 to 100] False Paroxysmal (2.7 to 4.6] False 40.1 (34-46.2)
Male 46‐65 [0 to 100] True Paroxysmal (4.6 to inf) False 50 (41.4-58.6)
Female ≤45 (100 to 125] False Paroxysmal (4.6 to inf) False 50.1 (35.7-64.5)
Male 46‐65 (100 to 125] True Paroxysmal (4.6 to inf) False 66.3 (57.4-75.1)
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Sex
Age
(years)

Left atrium volumea
(ml/m2) Smoking active Persistent AF

Epicardial fata
(cm3) OSAb

Conditional probability
of AF relapse, % (95%
CI)

Female +65 (125 to inf) False Persistent (4.6 to inf) False 66.4 (53.8-78.9)
Male +65 (100 to 125] False Persistent (4.6 to inf) False 66.4 (52.6-80.2)
Female 46‐65 (100 to 125] False Paroxysmal (4.6 to inf) False 66.5 (59.9-73.1)
Male +65 (125 to inf) False Paroxysmal (4.6 to inf) False 71.5 (63.8-79.2)
Male +65 (125 to inf) False Persistent (4.6 to inf) False 74.8 (63.3-86.4)
Male 46‐65 (125 to inf) True Persistent (4.6 to inf) True 74.9 (58.4-91.4)

aSquare brackets indicate that the end point is included in the range, and parentheses indicate that the end point is not included in the range.
bOSA: obstructive sleep apnea.

The 7 Predictors
In the first stage, the calculation considered the clinical state
of the patients for the 7 parent nodes of AF relapse represen-
ted in the network structure: age, sex, smoking, preablation
AF type, left atrial volume, epicardial fat, and OSA. The

performance of the model in classifying AF relapse with all
parent nodes (7 predictors) was calculated to an average area
under the curve (AUC) value of 0.752 (95% CI 0.701‐0.800)
for all sampling methods. ROC curves for each validation test
are shown in Figure 3.

Figure 3. Receiver operating characteristic curves for all validation sampling methods applied to the model with 7 predictors: age, sex, smoking,
preablation AF type, left atrial volume, epicardial fat, and obstructive sleep apnea. AUC values averaged 0.752 (95% CI 0.701‐0.800). AUC: area
under the curve.
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The 5 Predictors
Out of the 7 predictive features used in the previous test, 2
are usually difficult to obtain: left atrial volume and epicardial
fat. These 2 features are typically calculated by diagnostic
imaging, which is not always performed for all patients. In
some cases, the physician does not have access to those
measurements, which frustrates the calculation of medical
scores that require any of those values, as is the case with the
ATLAS score.

The purpose of this test was to evaluate the performance of
the model without these 2 features, thus simulating a frequent

real-life scenario. As such, we calculated the conditional
probability of AF relapse for each patient in the test set,
considering only 5 of its parent nodes: age, sex, smoking,
preablation AF type, and OSA. The remaining 2 parent nodes
(left atrial volume and epicardial fat) were disregarded from
evidence to calculate conditional probabilities.

The performance of the model for classifying AF relapse
with these 5 predictors was as expectably lower than with 7
predictors, with a calculated AUC average of 0.661 (95% CI
0.603‐0.718) for all sampling methods. ROC curves for each
validation test are shown in Figure 4.

Figure 4. Receiver operating characteristic curves for all validation sampling methods applied to the model with 5 predictors: age, sex, smoking,
preablation atrial fibrillation type, and obstructive sleep apnea. AUC values averaged 0.661 (95% CI 0.603‐0.718). AUC: area under the curve.

The 6 Predictors
The predictive performance with only the previous 5
predictors appears to be slightly more than average. How-
ever, it can be observed from the defined Bayesian network
structure (Figure 1) that the epicardial fat node has BMI as
its single parent, meaning that the latter directly influences
the former. As such, the lack of information on epicardial
fat for a given patient can be partially compensated by its

information on the BMI value. This poses an interesting
possibility, especially when observed that BMI is usually an
available or easy to obtain feature for any patient.

The rationale for this test was therefore to gauge the
predictive power of a model when using the 5 predictors
in the previous experience, plus the information on the BMI
node. All these 6 features—age, sex, smoking, preablation
AF type, OSA, and BMI—are usually easily available clinical
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variables for physicians’ evaluation, which do not require the
use of additional complex or expensive diagnostic means.
Therefore, this setting simulates the predictive power of the
model in a likely real-life scenario.

For this test, we calculated the conditional probability
of AF relapse for each patient in the test set, consider-
ing evidence on age, sex, smoking, preablation AF type,

OSA, and BMI. Any information on left atrial volume and
epicardial fat was ignored for this purpose.

The performance of the model for classifying AF
relapse with these 6 predictors resulted in a computed
AUC average of 0.703 (95% CI 0.652‐0.753) for all
sampling methods. ROC curves for each validation test are
shown in Figure 5.

Figure 5. Receiver operating characteristic curves for all validation sampling methods applied to the model with 6 predictors: age, sex, smoking,
preablation atrial fibrillation type, obstructive sleep apnea, and BMI. AUC values averaged 0.703 (95% CI 0.652‐0.753). AUC: area under the curve.

Table 3 presents a comparative analysis of the three
models developed using 5, 6, and 7 predictors, respec-
tively. As shown, the AUC-ROC progressively increases
with the addition of predictors, indicating improved model

performance. Furthermore, the 95% CI narrows as the number
of predictors increases, suggesting greater precision in the
model’s estimates.

Table 3. Comparative analysis of model performance based on the number of predictors and validation sampling techniques, using area under the
receiver operating characteristic curve (AUC-ROC) metrics.
Model AUC-ROC (95% CI)

Bootstrap Split 80:20 Split 90:10 Split 95:5 Mean
5 predictors 0.658 (0.603‐0.713) 0.660 (0.605‐0.715) 0.660 (0.605‐0.715) 0.664 (0.610‐0.718) 0.661 (0.603‐0.718)
6 predictors 0.703 (0.653‐0.753) 0.704 (0.654‐0.753) 0.702 (0.652‐0.752) 0.704 (0.654‐0.753) 0.703 (0.652‐0.753)
7 predictors 0.755 (0.710‐0.800) 0.751 (0.706‐0.797) 0.747 (0.701‐0.792) 0.755 (0.709‐0.800) 0.752 (0.701‐0.800)
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Discussion
Principal Findings
The ability to accurately predict clinical outcomes is vital
for improving the quality of medical care and increasing
the efficiency of resource allocation in health care. For such
predictions, cardiologists often use clinical scores that have
various limitations, such as being dependent on a set number
of medical variables or not being adaptable to new medical
knowledge. Nonetheless, these professionals have also been
witnessing the development of AI models for applications
in cardiology in general [20] and for the management of
arrhythmias in particular [21,22]. In this context, our aim was
to develop an alternative model to clinical scores that was not
susceptible to these limitations, to predict the relapse of AF
after PVI procedure.

For this purpose, we have resorted to Bayesian net-
works, a type of probabilistic graphical model that can
represent knowledge as a set of variables and their condi-
tional dependencies. Unlike traditional prognostic models
based on linear or logistic regressions, Bayesian networks
offer an interpretable graphical structure, which enhances the
model’s clarity and facilitates its adoption among physi-
cians. In addition, Bayesian networks manage missing data
more efficiently than other machine learning methods like
classification and regression trees or random forests, as
they can compute the probability of an outcome even when
predictive variables have missing values. This makes them
particularly well suited for medical datasets, where miss-
ing data are often a challenge. We have therefore chosen
to develop our models based on Bayesian networks due
to their explainability, flexibility, and robustness. Their
explainability derives from their ability to represent relation-
ships between variables as a graphical model, thus render-
ing their results more comprehensible. This capability is of
paramount importance for the acceptance of AI models by
medical professionals, who can thus integrate them safely into
clinical practice [23]. Further, the models’ flexibility derives
from the ability to accommodate and represent new medi-
cal knowledge by reshaping the network structure accord-
ingly and recalculating the conditional dependencies among
multiple variables. Therefore, new suspected or known risk
factors or predictors for AF relapse can be incorporated
into a Bayesian network model at any time, with minimal
resetting of the model. Additionally, the models’ robustness
derives from the fact that they can make predictions for
the outcome variable even when there are missing data on
some predictive variables, thus allowing them to be used in
cases of incomplete information on any given patient. Thus,
unlike clinical scores, Bayesian networks do not require the
full set of clinical explanatory variables to deliver useful
results. Despite none of these characteristics being unique to
Bayesian networks on its own, this combination of charac-
teristics makes these models highly interesting to be used
as basis for clinical decision support tools.The first stage
of the construction of our model was to create the network
structure, that is, the network of relationships between the

clinical variables. As stated in the Methods section, this was
achieved in 2 steps: initially the known relationships were set
manually based on expert knowledge; then, in a second step,
the network structure was improved upon inference from data
by the use of an AI algorithm. At this last step, the algo-
rithm suggested a relationship between BMI and epicardial
fat, which was considered acceptable, as there is significant
evidence of a correlation between these two variables [24].
This finding proved useful since it enabled the use of the
path “BMI → epicardial fat → AF relapse” when there
was no information on the middle variable. The algorithm
also suggested a path “OSA → pre-ablation AF type →
left atrial volume.” In this study, we opted to retain this
suggestion in the network structure as a potential motivation
for further exploration in future research. Although these
relationships were considered to represent knowledge derived
from the data, they were not particularly relevant for the
model calculations, since each of these variables is also
directly related to the outcome variable.

The second stage of the construction of our model was to
train and validate the model based on the previous net-
work structure. When validating the use of evidence from
the 7 parent nodes of our outcome variable, the model
performed with a calculated AUC value of approximately
0.75, interpreted as acceptable diagnostic accuracy [25].
These results implied using as predictive variables age, sex,
smoking, preablation AF type, left atrial volume, epicardial
fat, and OSA. However, some of these features are not
always available in patients’ clinical records. Thus, we have
validated the model in the absence of information on left
atrial volume and epicardial fat as predictive features. In this
case, the model exhibited an expectedly lower performance,
with a calculated mean AUC value close to 0.66. Despite the
observed difference was not statistically significant, as noted
from the overlapping confidence intervals, it suggests that
these 2 features have a high weight on the performance of
the model. This finding is consistent with those reported in
the ATLAS score that the left atrial volume has the highest
weight on the predictive power of that score [2].

Going further, our experiment also showed that the lack
of information on epicardial fat can be partially compensated
for by evidence of BMI, as this is its parent node. Taking
into account daily clinical practice, this poses an interesting
possibility, since BMI measurements are generally available
for clinical evaluation for most patients. In these 6-variable
cases, the model response exhibited a calculated mean AUC
value of 0.70. Also here, despite the observed differences
for the previous scenarios not being statistically significant,
these outcomes fit within an acceptable range for a prediction
tool. Such results implied using as predictive variables age,
sex, smoking, preablation AF type, OSA, and BMI, all of
which are typically easy to obtain in a clinical setting. To put
these results in perspective, the AFA Recur tool developed by
Saglietto et al [5] achieves a performance of AUC 0.72 using
a 19-variable AI model with little to no explainability.

Future research in the context of predicting AF relapse
using Bayesian networks should address several key
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challenges and directions. The first is ensuring the generaliz-
ability of the model across diverse populations and clinical
settings to seek validation in varied patient cohorts. Sec-
ond, it would be essential to conduct longitudinal studies to
assess the model’s long-term performance and capture patient
evolution over extended time horizons. In addition, future
studies could explore the inclusion of expanded predictive
factors, such as genetic influences, lifestyle changes, and
comorbidities, to enhance the model’s accuracy and clini-
cal use. Finally, incorporating patient-reported outcomes and
preferences into the predictive framework may improve the
model’s relevance and acceptance, fostering a more patient-
centric approach to clinical decision-making.

We consider that this data-based approach based on a
Bayesian network model can be the backbone for a future
clinical decision support system. Being an AI model, it opens
the possibility of being continuously retrained as new patient
information becomes available in clinical records, hence
progressively providing more accurate results upon new
accumulated data. Such a retraining process can be autom-
atized on a schedule or upon a trigger, for example, recal-
culating conditional dependencies between clinical features
on a monthly basis or at every new 100 patient observa-
tions. This retraining of the model based on the recalcula-
tion of conditional probabilities from new patient data is not
expected to represent significant computational costs, even
for exceptionally large amounts of patient observations.

This model can also be considered as an enhancement of
the ATLAS score, as it is based on its 5 predictive features, to
which 2 additional features were added. Nonetheless, it may

serve as a starting point for the representation of knowledge
in this field, being open to incorporating new evidence as
it becomes available. For such a reason, we believe that the
findings of this research contribute to the growing body of
knowledge on the application of AI methods in cardiology
and pave the way for future advancements in predictive
analytics for cardiovascular diseases.
Strengths and Limitations
The model was developed and evaluated on a dataset with
a limited number of features. Although the current literature
identifies other potential risk factors for relapse of AF, these
were not considered in this work, as there was no informa-
tion from patients on such features. Nevertheless, this type
of model allows the incorporation of other risk factors at
any time, provided that the network structure is rebuilt for
that knowledge representation and the model is retrained
accordingly.

In addition, the size of the dataset used in this work was
below optimal for this type of probabilistic model. This is
particularly relevant if we consider the subsample sizes for a
given combination of clinical conditions (eg, in this dataset,
there was only one observation that simultaneously satisfies
the multiple conditions sex = female + smoking = true + OSA
= true). However, this type of model can be set to learn from
new patient data as they becomes available. In this fashion, as
it continuously builds on new evidence, the model becomes
more accurate and reliable, even for less frequent clinical
conditions.
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