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Abstract
Background: Hypertension is a leading cause of cardiovascular disease and premature death worldwide, and it puts a heavy
burden on the health care system. Therefore, it is very important to detect and evaluate hypertension and related cardiovascular
events to enable early prevention, detection, and management. Hypertension can be detected in a timely manner with cardiac
signals, such as through an electrocardiogram (ECG) and photoplethysmogram (PPG), which can be observed via wearable
sensors. Most previous studies predicted hypertension from ECG and PPG signals with extracted features that are correlated
with hypertension. However, correlation is sometimes unreliable and may be affected by confounding factors.
Objective: The aim of this study was to investigate the feasibility of predicting the risk of hypertension by exploring features
that are causally related to hypertension via causal inference methods. Additionally, we paid special attention to and verified
the reliability and effectiveness of causality compared to correlation.
Methods: We used a large public dataset from the Aurora Project, which was conducted by Microsoft Research. The dataset
included diverse individuals who were balanced in terms of gender, age, and the condition of hypertension, with their ECG
and PPG signals simultaneously acquired with wrist-worn wearable devices. We first extracted 205 features from the ECG and
PPG signals, calculated 6 statistical metrics for these 205 features, and selected some valuable features out of the 205 features
under each statistical metric. Then, 6 causal graphs of the selected features for each kind of statistical metric and hypertension
were constructed with the equivalent greedy search algorithm. We further fused the 6 causal graphs into 1 causal graph and
identified features that were causally related to hypertension from the causal graph. Finally, we used these features to detect
hypertension via machine learning algorithms.
Results: We validated the proposed method on 405 subjects. We identified 24 causal features that were associated with
hypertension. The causal features could detect hypertension with an accuracy of 89%, precision of 92%, and recall of 82%,
which outperformed detection with correlation features (accuracy of 85%, precision of 88%, and recall of 77%).
Conclusions: The results indicated that the causal inference–based approach can potentially clarify the mechanism of
hypertension detection with noninvasive signals and effectively detect hypertension. It also revealed that causality can be
more reliable and effective than correlation for hypertension detection and other application scenarios.
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Introduction
Hypertension, also known as high blood pressure (BP), is a
condition in which the pressure of the blood increases in the
arteries. The diagnosis of hypertension relies on BP measure-
ment, and it is defined as systolic BP (SBP) ≥140 mm Hg
or diastolic BP (DBP) ≥90 mm Hg [1]. Hypertension can
be further classified into 3 stages. Stage 1 hypertension is
associated with SBP and DBP ranges of 140‐159 mm Hg
and 90‐99 mm Hg, respectively. Stage 2 hypertension is
characterized by SBP and DBP ranges of 160‐179 mm Hg
and 100‐109 mm Hg, respectively. For stage 3 hypertension,
the SBP and DBP are more than 180 mm Hg and 110 mm Hg
[1,2].

Furthermore, it is noteworthy that even when SBP ≥115
mm Hg and DBP ≥75 mm Hg, a continuous relationship
exists between the increase in BP level and the occurrence
of cardiovascular or renal pathological conditions and even
fatal events. The definition of high blood pressure as SBP
≥140 mm Hg or DBP ≥90 mm Hg primarily serves the
purpose of simplifying hypertension diagnosis and decision-
making regarding hypertension treatment. This threshold was
chosen because the benefits of intervention outweigh the risks
associated with nonintervention in this context.

According to a review of the global epidemiology of
hypertension [3], hypertension is a leading preventable risk
factor for cardiovascular disease and all-cause mortality
worldwide. In 2010, a total of 1.38 billion people (31.1% of
the global adult population) had hypertension. The prevalence
of hypertension is rising globally owing to the aging of the
population and increases in exposure to lifestyle risk factors,
including unhealthy diets and lack of physical activity.

In addition, hypertension can be divided into primary and
secondary forms. Secondary hypertension originates from
specific causes and only encompasses a small fraction of the
population. Primary hypertension covers the remaining large
fraction of the hypertension population, and it arises from
intricate interactions among genetic factors, environmental
influences, and the aging process. These factors collectively
contribute to an increase in systemic vascular resistance, a
hallmark hemodynamic abnormality that leads to elevated
BP in almost all hypertensive individuals [4]. Furthermore,
considering that hypertension may not show any symptoms
in its early stages and that there is a continuous relationship
between an increase in BP and the risk of stroke, coronary
heart disease, heart failure, and chronic kidney disease, it is
very important to detect and treat hypertension in the early
stages.

Moreover, physicians often diagnose hypertension by
office BP, but masked hypertension and white coat hyperten-
sion cannot be effectively detected by office BP. Instead, they
usually detect masked hypertension and white coat hyper-
tension through a 24-hour ambulatory recording of the BP
signal [5], but this process is cumbersome. Hence, there are
data-driven approaches based on noninvasive signals for the
detection of hypertension, such as electrocardiogram (ECG)
or photoplethysmogram (PPG), that are easily accessible from

wearable sensors [2]. Subsequently, wearable monitoring
can continuously monitor patients’ physiological conditions
24 hours a day. Compared with outpatient blood pressure
monitoring, wearable monitoring can obtain patients’ rhythm
information and real physiological conditions (to avoid white
coat hypertension and other conditions), as well as the
impact of patients’ behaviors on physiological indicators and
other personalized information. Rich reference information is
conducive to more accurate assessment and stratification of
individual risks.

There are various studies on detecting hypertension with
data-driven methods based on noninvasive signals. These
methods include classic machine learning models with
hand-extracted features and feature representation learning
with deep learning methods. For example, Paragliola et al
[6] proposed a novel approach for analyzing and classify-
ing the ECG signal with a hybrid deep learning network
method called hybrid deep network, which combines long
short-term memory, convolutional neural networks, and deep
neural networks. The hybrid method can reach an average
accuracy of 0.98 and an average sensitivity and specificity of
0.97. Elgendi et al [7] reviewed the effect of different types
of artifacts added to the PPG signal, characteristic features
of the PPG waveform, and existing indexes on hypertension
diagnosis. In another study, Alkhodari et al [8] used features
related to heart rate variability to predict hypertension based
on decision trees and random undersampling boosting. The
accuracy of the method was 0.81, with the F1-score and area
under the receiver operating characteristic curve (AUC) being
0.86 and 0.89, respectively. In a study about the automated
detection of hypertension severity, Rajput et al [9] developed
a 2-band optimal orthogonal wavelet filter bank method,
which generates 6 subbands from each ECG signal through a
5-level wavelet decomposition. Further, the sample mean and
wavelet entropy features of all subbands were computed to
predict the risk of hypertension with classic machine learning
methods, such as k-nearest neighbors and support vector
machine, and the proposed method can achieve an average
classification accuracy of 0.99.

However, most of the previously mentioned studies
relied on extracting features correlated with hypertension
but ignored the causality of hypertension and character-
istic variables. Due to the presence of confounding fac-
tors, correlations can lead to wrong conclusions, just
like Simpson’s paradox [10]. In different populations, the
distribution of confounding factors will change, which means
the correlations can be unstable and unreliable. Instead, causal
inference can not only identify more reliable feature variables
with the elimination of confounding factors but also provide
more trustworthy guidance for further exploring the physio-
logical mechanisms of hypertension [11].

In this work, we propose to predict hypertension based
on causal inference with wearable noninvasive signals. The
overview of the proposed method is delineated in Figures
1 and 2. We will select effective features based on cau-
sality between hypertension and features extracted from
PPG and ECG signals. Then, combined with the detected
causal features, we will predict hypertension and evaluate
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its prediction performance by various evaluation metrics.
Ultimately, we aim to identify some features that may be of
great value in predicting hypertension.

Figure 1. Research route flow chart.

Figure 2. Flowchart of the causal inference for hypertension prediction. (A) Signal preprocessing: 205-dimension beat-by-beat features were
extracted from the ECG and PPG as well as the first and second derivatives of the PPG signal (dPPG, sdPPG), and the statistical metrics of these
features were calculated as the feature matrix M. (B) Based on the feature matrix M, the causal graphs of the extracted features and hypertension
status were identified with the causal inference algorithm (the equivalent greedy search algorithm). (C) The causal feature matrix F was identified
from the causal graph obtained from step (B), and we used machine learning classification algorithms to achieve hypertension prediction. ECG:
electrocardiogram; PPG: photoplethysmogram.
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Methods
The methods of this paper can be divided into 7 steps; the
details of each step are shown in Figure 1.
Ethical Considerations
In this study, we used data from the Microsoft Wave-
form Database, and we obtained data access permission
from the Microsoft Data Access Committee [12]. Microsoft
obtained institutional review board approval from WCG
IRB (Puyallup, WA, United States). Individuals unable to
consent in English, pregnant women, prisoners, institutional-
ized individuals, and individuals younger than 18 years were
excluded from participation due to their vulnerable status.
All the subjects voluntarily participated in the experiment
and signed informed consent. The original informed consent
and the institutional review board both allow for secondary
analysis without additional consent. The dataset used in this
study was de-identified to protect the privacy of the subjects.
Data
The database that we obtained data from was developed
for validating new methods for blood pressure measurement
with noninvasive sensors. Noninvasive epidermal pressure
signals, ECG signals, and PPG signals were acquired with
tension, electrical, and optical sensors, respectively. Mean-
while, the reference blood pressure was measured with either
the oscillometric method or the auscultatory method. In
this study, we used noninvasive signals for hypertension
detection. To validate our proposed method, we used data
collected based on the oscillometric method. A total of 614
subjects participated in the oscillometric protocol scheme,
with ages ranging from 18-85 years. After excluding data
anomalies during the collection process, including miswear,

malfunction, data file failure, participant opt-out, alignment
failure, and quality failure, relevant measurement information
from 483 subjects was retained [12]. In a further waveform
preprocessing step, poor waveform segments and subjects
with less than 4 qualified waveform segments were removed,
which led to the final retention of measurement data from
405 participants, comprising 183 hypertensive patients and
222 healthy individuals. The ages of the 405 participants
ranged from 18-60 years, with an average age of 45 years.
In addition, the 405 participants comprised 199 females and
206 males.

Moreover, measurements in this protocol were obtained
during controlled laboratory visits spaced at least 24 hours
apart. Additionally, dynamic measurements were collec-
ted during the 24-hour interval between laboratory visits.
Automatic measurements were taken every 30 minutes in the
morning and every 60 minutes in the evening. Each patient
typically had 24-36 waveform segments, with each acquired
for 15-30 seconds. Our feature extraction primarily relied on
data from dynamic measurements.
Feature Extraction
We extracted 205 features from the filtered ECG and PPG
signals with the extraction method defined in our previous
study [13]. The features mainly include pulse transit time
(PTT), time duration (TD), amplitude (AM), intensity of PPG,
the first derivative of PPG (dPPG), the second derivative of
PPG (sdPPG), area under the PPG curve (AR), and phys-
iological meaningful relative index (RI). The mathematical
expression and definition of these features are as follows and
are also described in Table 1. The fiducial points of ECG,
PPG, dPPG, and sdPPG signals of each cardiac cycle were
identified to calculate the features. The identified fiducial
points are illustrated in Figure 3.

Table 1. Features extracted from electrocardiogram and photoplethysmogram signals.
Index Classification Definition of features
1‐10 Pulse transit time Time deviation between R peak of electrocardiogram and

fiducial points of photoplethysmogram
11‐66 Time duration Time duration between 2 fiducial points of

photoplethysmogram
67‐111 Amplitude Amplitude between fiducial points of photoplethysmogram
112‐130 Pulse intensity Intensity of photoplethysmogram, dPPGa, and sdPPGb at

fiducial points
131‐185 Area Area under the photoplethysmogram curve between fiducial

points
186‐205 Relative index Physiological meaningful ratio index

adPPG: the first derivative of photoplethysmogram.
bsdPPG: the second derivative of photoplethysmogram.

JMIR CARDIO Gong et al

https://cardio.jmir.org/2025/1/e60238 JMIR Cardio 2025 | vol. 9 | e60238 | p. 4
(page number not for citation purposes)

https://cardio.jmir.org/2025/1/e60238


Figure 3. Diagram of fiducial points of the ECG and PPG signals as well as major types of features [13]. AI: absolute intensity; AR: area under the
PPG curve; AM: amplitude; dPPG: the first derivative of PPG; ECG: electrocardiogram; PPG: photoplethysmogram; PTT: pulse transit time; PW:
pulse width; RRI: R-R interval; sdPPG: the second derivative of PPG.

Feature Point (FP, 1∼10) = [PPG valley, sdPPG a, dPPG
peak, sdPPG a, PPG peak, sdPPG c, sdPPG d, dPPG valley,
sdPPG e, sdPPG f, PPG valley next]

PTT = FP(i) - R peak, i=1∼10
TD = [RRI, (FP(j) - FP(i)), i,j=1∼10, and j>i]
AM = PPG(FP(j)) - PPG(FP(i)), i=1∼10, and j>i
AIPPG = PPG(FP(i)), i=1∼10
AIdPPG = dPPG(FP(i)), i=1∼10
AIsdPPG = sdPPG(FP(i)), i=2,4,7∼10
AR = Area between (FP(j) – FP(i)), i,j=1∼10
RI: relative rising time, dicrotic diastolic ratio, augmen-

tation index, inflection point area point, slope transit time,
ratio of sdPPG (b/a, c/a, (c+d–b)/a, etc), PPG intensity ratio,
perfusion index [13].

After obtaining the above features, we can perform feature
selection and build a causal graph based on the causal
inference algorithm.

Algorithm of Causal Inference
We used the greedy equivalence search (GES) algorithm
to learn the causal graph. The GES algorithm is based on
the theoretical basis of Meek’s conjecture [14]. The Meek’s
conjecture is: if direct acyclic graph (DAG) M is an independ-
ent map of another DAG F, then there exists a finite set of
edges in DAG F that can be added or reversed, after each
modifiable edge is added or reversed direction, DAG M is
still an independent graph of DAG F. After all modifications
are done, M = F. Underlying the Meek’s conjecture, we can
use generalized score functions [15] and the GES algorithm to
get the final causal graph. Figure 4 shows the implementation
steps of the GES algorithm. In addition, we also provide
the pseudo code to illustrate the detailed steps of the GES
algorithm as shown in Textbox 1.

Figure 4. Flowchart of the greedy equivalence search algorithm.
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Textbox 1. Algorithm 1: Apply-edge-operation(G,ℌ).
Input: DAGsG and ℌ where G ≤ ℌ and G ≠ ℌ
1: Set G′ ← G
2: While G and ℌ contain a node Y that is a sink node in both DAGs and for which PaYG = PaYH, remove Y and all
incident edges from both DAGs
3: end while
4: Let Y be any sink node in ℌ
5: if Y has no children in G then
 6: Let X be any parent of Y in ℌ that is not a parent of
 7: Y in G, add the edge X → Y
 8: return G′
9: end if
10: Let DeYG denote the descendants of Y inG
11: And let D ∈ DeY G denote the (unique) maximal element from this set within ℋ2
12: Let Z be any maximal child of Y in G such that G is a descendant of Y in G
13: if Y → Z is covered in G
 14: reverse Y → Z in G′
 15: Return G′
16: end if
17: if There exists a node X that is a parent of Y but not a parent of Z in G′ then
 18: add X → Z to G′
 19: return G′
20: end if
21: Let X be any parent of Z that is not a parent of Y
22: Add Y → Y to G′
23: return G′
Output: DAG G′ that results from adding or reversing an edge in G.

Then, the GES algorithm has 2 stages. In the first stage,
it starts from an equivalence class (empty graph) with no
dependencies and keeps adding possible edges to search for
the largest equivalence class of generalized scoring functions
until the scoring functions’ local maximum is reached. Then,
in the second stage, the greedy principle is used to gradu-
ally delete the directed edges until the generalized scoring
function reaches the local maximum again, and the final
causal graph is obtained.

Considering that hypertension is a discrete variable while
the feature variables are continuous, we are essentially
dealing with mixed data. Traditional scoring functions such
as Bayesian information criterion and Bayesian Dirichlet
equivalent uniform do not take into account the issue of
mixed data; for example, it discretizes continuous data and
process it uniformly, resulting in a loss of valuable informa-
tion. Therefore, we introduce a generalized scoring func-
tion to replace traditional scoring functions. The generalized
function is primarily based on kernels and handles linear
causal relationships, nonlinear causal relationships, contin-
uous variables, discrete variables, and mixed data in a
uniform manner, maximizing information retention. Finally,
this scoring function addresses the issue of Markov equiv-
alence classes, to some extent, overcoming the limitation

of equivalence greedy search algorithms in distinguishing
Markov equivalence classes.

Finally, we needed to organize a feature matrix in which
each row represents a sample and each column represents
a kind of feature, then input this matrix into the equivalent
greedy search algorithm to obtain the causal graph. Prior to
this, feature selection is a necessary step to construct the
feature matrix.
Feature Selection
This section mainly explains the specific process of feature
selection in this study, which is mainly divided into the
following 3 parts. After completing feature selection, we will
perform causal strategy and causal graph construction.

1. Six statistical metrics: Since ECG and PPG signals are
time series data, we extracted the beat-by-beat features
and calculated the statistical metrics of these 205
features to represent the temporal variability informa-
tion. The statistical metrics include: standard deviation,
range, mean, quartile deviation, coefficient of variation,
and median, which result in 205×6=1230 dimensional
features. This allows us to capture and analyze the
temporal characteristics of ECG and PPG signals while
summarizing them using key statistical measures. Based
on the extracted features, we then detected the 6
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different causal graphs of these features with hyperten-
sion, which provide insights into the relationships and
causal effects among the extracted feature variables and
hypertension.

2. Significant difference analysis: Now, we need to use
the corresponding 205 features to construct a causal
graph under each metric. Due to the limitations of
the equivalent greedy search algorithm calculation
efficiency, hardware device computing power resour-
ces, and the number of subject samples, the time cost
of constructing a causal graph based on 205 features
is unacceptable. Therefore, we will use significant
difference analysis to exclude features that do not show
significant differences between hypertensive patients
and healthy people. Then, considering the time cost and
sample size, we will sort the retained features according
to the degree of significant difference. We ultimately
selected less than 50 features for causal graph construc-
tion.

3. Causal feature selection: In the following, we select the
features that have a direct causal relationship with the

hypertension node from the causal graph constructed
under each metric. A total of 24 causal features were
selected under the 6 metrics. It should be noted here
that different metrics mean observing the changes of
the same feature over a period of time from different
perspectives. The features with the same number under
different statistical metrics are essentially derivatives of
the original features. Taking feature 52 as an example,
we can get 4 feature variables under these metrics; they
are shown in Figure 5. These 4 feature variables are
essentially derivatives of feature 52. Therefore, in the
final causal graph, we use feature 52 nodes to represent
the above 4 features. From this, we can see that there
are some features with the same number among the 24
causal features. We can use a feature node in the final
causal graph to represent these feature variables with
the same number, and finally obtain a final causal graph
containing 10 feature nodes.

Figure 5. Box plot of the various statistical indicators of the feature 52.
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Strategy of Causal Inference
In order to mitigate the potential issues of bidirectional
causality and cyclic graphs, we conducted the analysis of
the causal relationships between respective feature variables
and hypertension under each indicator, culminating in the
derivation of corresponding causal subgraphs, so as to obtain
the causal graph.

1. Strategy for obtaining causal graph: We randomly
partitioned the dataset to identify the causal graph,
with the allocation of an additional validation set
for subsequent hypertension risk prediction. Recogniz-
ing that a single random partitioning could introduce
undesired stochasticity (thereby rendering the resulting
causal graphs potentially unrepresentative), we draw
inspiration from the concept of 10-fold cross-valida-
tion. This method involves conducting 10 iterations
to compute causal subgraphs, followed by a rigorous
pruning process to retain only those segments demon-
strating direct causal associations with hypertension
within each causal subgraph. Subsequently, guided by
the principle of majority rule, we amalgamate the
results of these iterations to derive the ultimate causal
subgraph.

2. Strategy for merging causal graph: After obtaining
the final causal subgraph with each graph identified
with the 6 categories of features mentioned in feature
selection section, we assume that the weights of the
causal relationships between the feature variables and
hypertension are equal under each category of feature;
based on the principle of majority rule, we integrate
multiple causal subgraphs into the ultimate causal
graph. This method can screen out more reliable direct
causal feature variables, further simplify the causal
graph, and preserve important information.

Classifier and Performance Evaluation
In conjunction with a 10-fold cross-validation approach
to partition the dataset into training and testing sets, our
predictive modeling of hypertension risk primarily leverages
4 classification algorithms: random forest, logistic regression,
decision trees, and naive Bayes. These algorithms are selected
for their effectiveness in capturing diverse patterns in the
data. Moreover, the evaluation of our models is based on
a comprehensive set of performance metrics, encompassing
accuracy, precision, recall, F1-score, and the AUC, which are
defined later on. Following the derivation of the final causal
diagram, we proceeded to select an equal number of feature
variables with the strongest correlation to hypertension, based
on the point-biserial correlation coefficient. These selected

features were then used in the prediction of hypertension risk.
Subsequently, we compared the predictive performance of
this model with the one based on causal feature variables.

Results
Signal and Feature Analysis
We found that there are 24 feature variables directly causally
related to hypertension under 6 indicators. These can be
abstracted into 10 representative feature variables in the
causal graph. Then, we used the point-biserial correlation
coefficient to select the 24 feature variables with the strongest
correlation to hypertension. After conducting data analysis,
we discovered that there are 5 feature variables that overlap
between the causal feature variables and the correlated feature
variables. These variables are as follows and 4 of them are
shown in Figure 5.

SDFeature 52  SD of TD sdPPGc − dPPGvalley
QDFeature 52  QD of TD sdPPGc − dPPGvalley
RFeature 52  Range of TD sdPPGc − dPPGvalley
MEFeature 52  Mean of TD sdPPGc − dPPGvalley
MEFeature 47  Mean of TD sdPPGc − PPGpeak

Furthermore, we selected the representative samples from
the groups of hypertensive patients and healthy people for
comparative analysis. The PPG waveform analysis diagrams
of hypertensive patients and healthy people are shown in
Figure 6, and the scatter plots of feature 52 are shown in
Figure 7. Then, based on the analysis of feature 52’s position
in PPG signals, we observed that in hypertensive patients, the
peak of the c-point on sdPPG may occur earlier compared
to healthy individuals. This could be a possible reason as
to why feature 52 is strongly correlated with hypertension
and is considered to have a strong causal relationship with
hypertension.

Finally, it is important to note that further research and
validation are necessary to confirm the relationship between
feature 52, the c-point on sdPPG, and hypertension. These
findings may provide valuable insights into potential markers
for hypertension and contribute to the understanding of its
pathophysiology.
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Figure 6. Comparison of PPG waveforms between healthy people and hypertensive patients. PPG: photoplethysmogram.

Figure 7. Scatter distribution of feature 52 for normotensive subjects (green) and hypertensive subjects (red).
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Causal Graph
In this study, considering the potential disturbance to the
causal graph caused by randomly partitioning the data into
training and testing sets, we used the idea of 10-fold cross-
validation and causal strategy I to mitigate such interference.
After applying the aforementioned procedures, we obtained
a total of 6 causal subgraphs under different metrics. In
addition, due to space constraints, this paper only presents

the causal subgraphs under the standard deviation and range
indicators, as shown in Figures 8 and 9, respectively. It is
observed that the feature variables directly causally associated
with the risk of hypertension vary across different indicators.
Based on the principle of majority rule, we applied causal
strategy II to obtain the final causal graph, as depicted in
Figure 10.

Figure 8. Causal subgraph of hypertension and the features calculated with their standard deviation. AI: absolute intensity; AR: area under the PPG
curve; dPPG: the first derivative of PPG; P-R: precision-recall; PPG: photoplethysmogram; RI: physiological meaningful relative index; sdPPG: the
second derivative of PPG; TD: time duration.

Figure 9. Causal subgraph of hypertension and the features calculated with their range. AM: amplitude; AR: area under the PPG curve; dPPG: the
first derivative of PPG; P-R: precision-recall; PPG: photoplethysmogram; RI: physiological meaningful relative index; sdPPG: the second derivative
of PPG; TD: time duration.
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Figure 10. Final causal graph. AR: area under the PPG curve; dPPG: the first derivative of PPG; P-R: precision-recall; PPG: photoplethysmogram;
RI: physiological meaningful relative index; sdPPG: the second derivative of PPG; TD: time duration.

Hypertension Classification Results
In this subsection, we used multiple classifier algorithms
for hypertension classification prediction. First, we primarily
utilized logistic regression and other classification algorithms
based on causal feature variables for hypertension classifica-
tion. The classification performance is presented in Table
2. We found that the logistic regression algorithm exhibited
the best predictive performance with an accuracy of 0.89,

precision of 0.92, recall of 0.82, and F1-score of 0.87. Both
the accuracy and accuracy rate are relatively high, which
means that our classification prediction model can accurately
predict hypertensive patients and healthy people, and the
probability of making errors in the judgment of hyperten-
sive patients is low; the F1-score further proves the above
conclusion. In addition, a higher recall rate indicates that most
patients with high blood pressure can be correctly predicted.

Table 2. Causality-based classification performance.
Algorithm Accuracy Precision Recall F1-score
Random forest 0.86 0.90 0.77 0.83
Decision tree 0.78 0.76 0.78 0.76
Naive Bayes 0.80 0.95 0.58 0.72
Logistic regression 0.89 0.92 0.82 0.87

Subsequently, Figure 11 illustrates the receiver operating
characteristic curve and precision-recall curve of the classifier
algorithms. The purple line represents the logistic regression
classification algorithm. It can be observed that the area under

the curve of this logistic regression classification algorithm
is higher than that of other classification algorithms in both
receiver operating characteristic and precision-recall curves.
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Figure 11. The ROC curve (top panel) and P-R curve (bottom panel) of hypertension detection based on causal features with different machine
learning algorithms: the blue curve represents random forest (R), the green curve represents decision tree (D), the red curve represents naive Bayes
(G), and the purple curve represents logistic regression (L). AUC: area under the receiver operating characteristic curve; FPR: false positive rate; P-R:
precision-recall; ROC: receiver operating characteristic; TPR: true positive rate.

Finally, we compared the classification performance based
on causal feature variables with that based on correlated
feature variables, as shown in Table 3. We found that the
best performance in terms of the 4 evaluation metrics was
consistently achieved by the classification algorithm based on

causal feature variables. This finding is also consistent with
the results presented in Figures 12 and 13. These findings
imply that the causal characteristics we screened have certain
mining value in the field of hypertension prediction.

Table 3. Classifier performance comparison.
Algorithm Accuracy Precision Recall F1-score
Causality

Random forest 0.86 0.90 0.77 0.82
Decision tree 0.78 0.76 0.78 0.79
Naive Bayes 0.80 0.95 0.58 0.72
Logistic regression 0.89 0.92 0.82 0.87

Correlation
Random forest 0.79 0.81 0.72 0.75
Decision tree 0.72 0.68 0.72 0.69
Naive Bayes 0.80 0.82 0.74 0.77
Logistic regression 0.85 0.88 0.77 0.82
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Figure 12. The ROC curve (top panel) and P-R curve (bottom panel) for the best classifier of causality and correlation: the blue curve represents the
logistic regression classifier based on causality, while the red curve represents the logistic regression classifier based on correlation. AUC: area under
the receiver operating characteristic curve; FPR: false positive rate; P-R: precision-recall; ROC: receiver operating characteristic; TPR: true positive
rate.

Figure 13. Histogram of evaluation metrics for the best classifier of causality and correlation.
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Discussion
Principal Findings and Advantages
This study primarily explored the relationship between
feature variables extracted from ECG and PPG signals
and hypertension from a causal perspective, using causal
inference methods to construct causal graphs. Simultaneously,
to preserve the temporal information of time series signals
to the maximum extent, causal graphs were constructed
separately for 6 metrics, including standard deviation, mean,
range, coefficient of variation, median, and quartiles. These
causal graphs were derived based on specific causal strat-
egies, ensuring a certain degree of reliability and accuracy
in the resulting causal graphs. By assessing the perform-
ance of feature variables based on causality in hypertension
risk classification prediction against those based on correla-
tion, we validated the reliability of causality-based feature
variables compared to correlation-based ones.

Specifically, when selecting feature variables strongly
associated with hypertension, both causal inference and
correlation coefficient–based methods performed similarly.
However, when the association between feature variables and
hypertension was weak, causal inference methods tended to
select more reliable feature variables compared to correla-
tion-based methods. This is the reason why feature variables
based on causality outperformed those based on correlation
in hypertension risk prediction. Additionally, we found that
feature 52’s derived variables exhibited significant differen-
ces in distribution between the hypertensive and healthy
subject groups under multiple metrics. This may provide
potential value and insights for subsequent pathological
mechanism analysis.
Comparison to Prior Work
This study conducted exploratory analysis, initially focus-
ing on the correlation analysis between hypertension and
blood pressure based on the medical information mart
for intensive care (MIMIC) database. Typically, the gold
standard for diagnosing hypertension is SBP and DBP,
where subjects are considered hypertensive when SBP
exceeds 140 mm Hg or DBP exceeds 90 mm Hg. Never-
theless, when clustering analysis was performed on 24-hour
dynamic blood pressure data collected from patients, we
observed that the blood pressure distribution of hypertensive
and nonhypertensive subjects did not exhibit significant

differentiation or stratification; instead, they appeared mixed.
After analysis, we attributed this phenomenon to factors
such as patients taking antihypertensive medications, being
in specific states, or incorrect device wear, which indi-
rectly reflects the limitations of blood pressure measurement.
Second, we previously conducted causal analysis [16] using
data collected from a self-generated database of 30 individ-
uals. Causal analysis was primarily carried out under the
mean metric, resulting in limited preservation of temporal
information. However, it still revealed significant differences
in the distribution of feature 52 between the hypertensive and
healthy subject groups, consistent with the findings of this
paper.
Limitations and Future Work
There were some limitations to this study. First, our work
primarily focused on binary classification to distinguish
hypertensive patients from healthy individuals. However,
hypertension can be categorized into different stages, such as
stage 1, stage 2, and stage 3, based on blood pressure level
and disease condition. Second, the population used could
have been more diverse in terms of race and ethnicity. In
our future work, we will consider conducting clustering of the
features to distinguish different stages of hypertension, and
we will validate the work on larger and more diverse subject
populations to be able to draw more general conclusions.
Conclusion
In this study, we explored the feasibility of predicting the
risk of hypertension using causal inference methods. First,
we constructed causal graphs using the GES algorithm
and 10-fold cross-validation approach under each indicator.
We then applied corresponding causal strategies to obtain
the optimal causal graphs for each indicator. Finally, we
merged the causal graphs from different indicators into a
final causal graph based on the majority rule. After selecting
the feature variables, we used classifiers including random
forests, decision trees, naive Bayes, and logistic regression
to predict hypertension. Overall, combining various indi-
cators, we found that most classifiers based on causal
features have better classification performance than classi-
fiers based on correlation features. To the best of our
knowledge, this study represents the first attempt to intro-
duce causal inference methods in hypertension prediction,
providing a new perspective for understanding the physiologi-
cal mechanisms of hypertension.
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