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Abstract

Background: Digital twin systems are emerging as promising tools in precision cardiology, enabling dynamic, patient-specific
simulations to support diagnosis, risk assessment, and treatment planning. However, the current landscape of cardiovascular
digital twin development, validation, and implementation remains fragmented, with substantial variability in modeling approaches,
data use, and reporting practices.

Objective: This systematic review aims to synthesize the current state of cardiovascular digital twin research by addressing 11
research questions spanning modeling technologies, data infrastructure, clinical applications, clinical impact, implementation
barriers, and ethical considerations.

Methods: We systematically searched 5 databases (PubMed, Scopus, Web of Science, IEEE Xplore, and Google Scholar) and
screened 330 records. Forty-two original studies met the predefined eligibility criteria and were included. Data extraction was
guided by 11 thematic research questions. Mechanistic and artificia intelligence (Al) or machine learning (ML) modeling
strategies, data modalities, visualization formats, clinical use cases, reported impacts, limitations, and ethical or legal issueswere
coded and summarized. Risk of bias was evaluated using a custom checklist for modeling studies, the Prediction Model Risk of
Bias Assessment Tool (PROBAST) for prediction models, and the Risk of Biasin Non-Randomized Studies - of Interventions
(ROBINS-I) for observational studies.

Results: Most digital twins (29/42, 69%) relied on mechanistic models, while hybrid mechanistic—data-driven approaches and
purely data-driven designs were less frequent (13/42, 31%). Only 18 studies explicitly described ML or Al, most often deep
learning, Bayesian methods, or optimization algorithms. Personalization depended primarily on imaging (32/42, 76%) and
electrocardiography or other electrical signals (18/42, 43%). Visualization was dominated (41/42, 98%) by static figures and
anatomical snapshots. Clinically, digital twinswere most commonly applied to therapy planning, risk prediction, and monitoring.
Reported benefits focused on improved decision-making and therapy-related impacts, with occasional (8/42, 19%) reports of
increased accuracy or faster diagnosis, but there was limited evidence for downstream improvements in patient outcomes. Key
barriersincluded strong model assumptions and simplifications; high computational cost; dataquality and availability constraints;
limited external validation; and challenges in real-time performance, workflow integration, and usability. Explicit discussion of
ethical, legal, or governance issues wasrare (7/42, 17%).

Conclusions: Cardiovascular digital twins show substantial potential to advance precision cardiology by linking personalized
physiological modelswith clinical decision support, particularly for therapy planning and risk prediction in arrhythmiaand heart
failure. However, real-world implementation is constrained by methodological heterogeneity, restricted data and validation
practices, limited openness of code and models, and sparse engagement with ethical and governance questions. Future research
should prioritize standardized evaluation frameworks, robust clinical validation, interoperable and user-centered system design,
and ethically grounded, patient-centered development to realize the full clinical value of digital twin systems.
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Introduction

In recent years, the integration of digital twin technology into
health care has opened new avenues for precision medicine,
particularly within the field of cardiology. A digital twin is a
dynamic, virtual representation of a physical system that is
continuously updated with real-time data, advanced
computational models, and artificial intelligence (Al) analytics
[1,2]. Inthe context of health care, digital twins serve asvirtual
replicas of patients, organs, or biological systems, encompassing
multidimensional, patient-specific information to inform clinical
decisions[3-5].

Cardiovascular diseases (CVDs) remain a leading cause of
morbidity and mortality worldwide, underscoring the need for
innovative, patient-centric approaches to diagnosis, treatment,
and management [6,7]. The application of digital twins in
cardiology involvesthe creation of virtual replicas of the human
heart by integrating anatomical, physiological, and molecular
data. These models are capable of simulating electrical activity
[8], mechanical function, hemodynamics, and drug responses
[9,10]. By combining data from cardiac imaging (eg, magnetic
resonance imaging [MRI] and computed tomography [CT]),
electrocardiography ~ (ECG),  hemodynamic  profiles,
electrophysiology recordings, electronic health records, and
omics assessments, digital twin systems provide a basis for
precision simulation and virtual experimentation [11].

These capabilitiesmake cardiac digital twins uniquely positioned
to support personalized treatment plans, enabling applications
such as risk stratification, therapy optimization, surgical
simulation, and drug safety testing. The integration of Al,
particularly machine learning (ML) and deep learning (DL),
has further improved the scalability and performance of digital
twinsin real-world applications.

However, despite promising technical progress, substantial
challenges remain. These include (1) high computational costs
and complex personalization pipelines; (2) data heterogeneity
and interoperability limitations, (3) lack of standardized
validation protocols and clinical benchmarks; and (4) ongoing
concerns regarding privacy, explainability, and regulatory
oversight.

While multiple reviews have surveyed digital twinsin genera
health care [12] or addressed cardiovascular simulation from a
technical standpoint [11], a comprehensive, domain-specific
synthesis integrating technical, clinical, and implementation
perspectives in personalized cardiology remains lacking.

To addressthis gap, we conducted a systematic review following
the PRISMA (Preferred Reporting Itemsfor Systematic Reviews
and Meta-Analyses) 2020 guidelines [13,14]. This review
explicitly examines original research articles on cardiovascul ar
digital twin systems, emphasizing personalization, clinical
relevance, and implementation feasibility. Our study followed
atwo-stage methodol ogy:

1. Screening phase: We screened 330 articlesfrom 5 databases
(PubMed, Scopus, IEEE, Web of Science, and Google
Scholar). After removing duplicates, non-English entries,
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and publications lacking abstracts or relevant context, 42
articles were retained.

2. Review phase: Three independent reviewers assessed
full-text articles based on structured research questions
(RQs). Each article was evaluated for relevance to 11
themes covering technology, data integration, clinical
application, validation, ethics, and data sources.

The following RQs guided our review:

«  RQI1-RQ4: What are the technological foundations of
cardiovascular digital twins, including modeling strategies,
Al integration, and open-source availability?

« RQ5and RQ6: How is patient-specific data structured and
visualized?

«  RQ7 and RQ8: What are the clinical applications and
disease targets of digital twins?

« RQ9: What clinical impacts have been reported as a result
of digital twin use?

+ RQ10and RQ11: What barriers, limitations, and ethical or
legal considerations are acknowledged in current studies?

The aim of this study wasto systematically review the existing
literature on cardiovascular digital twins to identify current
technologies, clinical uses, and challenges to implementation.

Methods

Overview

This systematic review was designed and conducted following
the PRISMA 2020 statement (Checklist 1). The protocol was
developed in advance and used a transparent, reproducible
approach to article retrieval, screening, and extraction. It was
structured around 11 domain-specific RQs targeting the
technological, clinical, and implementation dimensions of digital
twin systems in cardiology.

Data Sources and Search Strategy

A comprehensive literature search was performed across 5 major
academic databases: PubMed, Scopus, Web of Science, IEEE
Xplore, and Google Scholar. These platforms were selected to
ensure broad interdisciplinary coverage across biomedical,
engineering, and computational sciences. The databases were
searched between January and early February 2025, restricting
records to publications from 2010 onwards. Only the first 115
results sorted by relevance were screened for Google Scholar
due to indexing limitations. The reference lists of relevant
reviews were also scanned to ensure inclusion of key
foundational articles.

Datacollectionandinitia preprocessing were streamlined using
Triple-A software [15], which served as the main tool for
managing and organizing the retrieved records.

The search strategy used Boolean combinations of controlled
vocabulary (eg, MeSH) and free-text termsasfollows: (“digital
twin” OR “virtual heart” OR “patient-specific model”) AND
(“cardiology” OR “cardiac” OR “heart” OR “cardiovascular”)
AND (“simulation” OR “personalized medicine” OR “ precision
medicine” OR “in silico”).
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Toincrease transparency, we conceptual ly structured the search
according to the Population, Intervention, Comparison, and
Outcome (PICO) framework:

«  Population (P): Patientswith CVDs, including arrhythmia,
heart failure, ischemic heart disease, cardiomyopathy, and
related conditions.

- Intervention (1): Digital twin systems designed for
diagnosis, simulation, personalization, monitoring, risk
prediction, or therapy planning in cardiology.

« Comparison (C): Not applicable, as the review did not
evaluate digital twins against alternative interventions or
standard care.

«  Outcome (O): Descriptive outcomes related to modeling
strategies, datainfrastructure, clinical applications, reported
clinica impact, implementation barriers, and ethica or
governance considerations.

These PICO elements informed the design of our search and
eligibility criteria, while the detailed content of the review was
organized around 11 thematic RQs (RQ1-RQ11).

All search results were exported to a centralized reference
manager and screened using Microsoft Excel. The complete
search strings for the databases are provided in Multimedia
Appendix 1.

Eligibility Criteria

Articles were included if they (1) were origina empirical
research studies, including journal articles, conference papers,
and preprints; (2) reported on the devel opment, implementation,
or evaluation of digital twin systemsin health care; (3) focused
on cardiovascular applications, including anatomical,
physiological, or functional heart modeling; (4) wererelated to
individualized or personalized medicine, clinical
decision-making, or patient-specific therapies; and (5) were
published in English and provided a structured abstract.
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Articles were excluded if they (1) were review papers,
commentaries, editorials, book chapters, or theoretical position
pieces; (2) did not focus on cardiovascular systems (eg,
neurological or orthopedic digital twins); (3) were not available
infull text or lacked an identifiable abstract; (4) were duplicate
entries across databases; and (5) were published in languages
other than English, including those labeled as * unspecified” or
“null”

These criteriawereiteratively refined during the pilot screening
of 50 records.

We did not apply the exclusion criteria based on study design,
as the aim of this review was to comprehensively synthesize
diverse contributions to the digital twin field, including
conceptual, technical, and applied studies, without limiting the
scope to any particular methodological framework.

Screening and Article Selection

Theinitial search returned 330 records. A multistep screening
protocol was applied:

« Phase 1 (title and abstract screening): Three reviewers
independently screened articlesfor relevance. Discrepancies
were resolved by group discussion and mgjority vote.

« Phase 2 (eligibility review): Of 44 records identified in
phase 1, 2 records were excluded. A final set of 42 articles
was included in the synthesis.

Reviewers used a shared Microsoft Excel spreadsheet with
predefined drop-down fieldsfor coding decisions. Interreviewer
consistency was monitored, and a senior reviewer adjudicated
disagreements. The filtering questions used during study
selection are presented in Table 1. The complete list of all
screened records, along with their inclusion or exclusion status,
is provided in Multimedia Appendix 2.

Table. Filtering questions used during study selection for the systematic review of cardiovascular digital twin research.

Screening question?

Decision criteria

Filtering question 1: Does the study relate to digital twinsin health care
or medicine?

Filtering question 2: Does the study specifically address the use of digital
twinsin cardiology?

Filtering question 3: Does the study involve personalized or patient-spe-
cific applicationsin cardiology?

Includeif the study discusses digital twinsapplied in health care contexts.

Includeif the study focuses on cardiovascular applications of digital twins.

Includeif the study discusses patient-specific or precision medicine ap-
proaches.

8 ach question aligns with predefined inclusion and exclusion criteria applied acrosstitles, abstracts, and full texts.

RQsand Data Extraction

Data extraction was organized around 11 RQs, which were
structured into six thematic categories:

1. Technological foundations: modeling methods (RQ1),
mechanistic model types (RQ2), ML algorithms (RQ3),
and open-source availability (RQ4)

2. Datainfrastructure and visualization: patient-specific data
(RQ5) and visualization formats (RQ6)

https://cardio.jmir.org/2026/1/€78499

3. Clinical applications and conditions. clinical use cases
(RQ7) and cardiovascular conditions addressed in digital
twin studies (RQ8)

4. Clinical impact: reported outcomes and benefits (RQ9)

5. Implementation challenges: technical and validation barriers
(RQ10)

6. Ethical considerations: legal, privacy, and governance issues

(RQ11)

Each reviewer used a structured extraction form, built in Excel,
to code articles across multiple predefined categories (eg,
“FEM,” “ECG,” and “Heart Failure”) using a controlled
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vocabulary. Note fields allowed for contextual elaboration and
inductive theme discovery.

Categories were not mutually exclusive, allowing multiple
responses per article. The full data extraction form is provided
in Multimedia Appendix 3.

Data Extraction Process
Data extraction followed a structured workflow as follows:

1. Full-text review: Each selected study was fully reviewed
to extract methodological detailsand research contributions.

2. Thematic classification: Studieswere assigned to predefined
thematic categories based on their focus areaand objectives.

3. Double-reviewer validation: Three independent reviewers
extracted data; any conflicts were resolved via discussion.

4. Database compilation: Extracted data were compiled into
astructured dataset for further analysis.

Risk of Bias

Therisk of bias of the included studies was assessed using the
instrument most appropriate for the underlying study design.
Three distinct tools were used. First, simulation-based and
modeling-oriented studies, such asthose involving digital twins,
mechanistic models, or computational pipelines, were evaluated
using a custom modeling checklist, which was developed to
capture methodol ogical risks specific to computational modeling
(eg, datarepresentativeness, validation strategy, overfitting, and
reproducibility). Second, prediction-modeling studies were
appraised using the Prediction Model Risk of Bias Assessment
Tool (PROBAST), which evaluates risk of bias across 4
domains: participants, predictors, outcome, and anaysis. Finaly,
observational cohort studies were assessed using the Risk of
Biasin Non-Randomized Studies - of Interventions (ROBINS),
which provides structured domain-level judgments for 7 bias
domains, including confounding, selection of participants,
classification of interventions, missing data, and outcome
measurement.
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For al tools, domain-level judgments were assigned according
to published guidance or tool-specific documentation.
Risk-of-bias assessments were conducted independently by
multiple assessors, and any discrepancies were resolved through
discussion, with arbitration applied when consensus could not
be reached. Domain-level ratings were then synthesized into an
overal judgment (low, unclear, or high risk of bias) based on
the decision rules recommended for each tool.

Visualization of risk-of-bias judgments was performed using
robvis [16], an R package and web application that supports
structured display of traffic-light plots and summary plots.

Results

Overview

We synthesized the findings from 42 original research articles
on cardiovascular digital twins. The PRISMA flow diagram of
the study selection processis presented in Figure 1. The results
were structured around 11 predefined RQs, which were
organized into 6 thematic domains: technological foundations,
data infrastructure and visualization, clinical applications and
conditions, clinical impact, implementation challenges, and
ethical considerations. Each subsection follows a format:
overview, key insights, and interpretation. For each RQ, we
present summary patterns and cite representative studies in the
main text. The complete mapping of al studies to the
corresponding RQ categories is provided in Multimedia
Appendix 4, and the mapping from raw extraction valuesto the
harmonized categories used in the analyses is provided in
Multimedia Appendix 5.

Funding sources were reported for a subset of studies and were
most often public or academic, with asmaller number supported
by mixed public-foundation or public-industry collaborations
and relatively few funded solely by industry. Study-level funding
details are summarized in Multimedia Appendix 4.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Anayses) 2020 flow diagram illustrating the systematic selection
process for cardiovascular digital twin studies. A total of 330 records were retrieved from 5 major databases and screened using predefined eligibility
criteria. After removal of duplicates and exclusion of irrelevant or nonorigina articles, 42 studies were included in the final synthesis for qualitative

and quantitative analyses.
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Technological Foundations (RQ1-RQ4)

We outline the core technical elementsof cardiovascular digital
twin systems, focusing on modeling strategies (RQ1), types of
mechanistic models (RQ2), ML applications (RQ3), and
open-source availability (RQ4). Together, these RQs
characterized how digital twinswere constructed, personalized,
and shared, revealing trendsin hybrid modeling, theintegration
of Al, and the challenges in reproducibility.

RQ1: What Primary Modeling Approach is Used to
Develop Digital Twins?

Overview

All 42 studies were classified according to their dominant
modeling approach: mechanistic, hybrid, or data-driven. These

https://cardio.jmir.org/2026/1/€78499
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+ Papers not retrieved (2) !

categoriesreflect the computational core of digital twins, ranging
from physics-based simulation to statistical learning and their
integration.

Key Insights
The key insights are as follows:

«  Mechanistic models were the most common (29 studies
[8,11,17-43]), and they relied on physics-based formulations
(eg, finite element modeling [FEM], electrophysiological
simulation, and hemodynamic flow analysis) to generate
personalized physiological representations.

- Data-driven models were noted in 7 studies [44-50], and
they were primarily based on statistica learning or
machine-learning approaches without explicit biophysical
constraints.
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- Hybrid approaches were the least common (6 studies
[51-56]), and they combined mechanistic frameworkswith
data-driven components, for example, using ML to estimate
parameters, extract imaging features, or accelerate
computational solvers.

I nterpretation

The predominance of mechanistic approaches highlights the
central importance of physiological interpretability in
cardiovascular digital twin development. Studiesinvolving these
approachesfocus on replicating biophysical behavior with high
fidelity, supporting diagnostic and interventional simulation
tasks.

Data-driven twins, while less common, demonstrate growing
interest in leveraging large clinical datasets for prediction,
classification, and risk estimation. Their scope is more limited
in scenarios requiring detailed physiological realism.

Hybrid methods illustrate emerging strategies that balance
accuracy and computational efficiency. In studies involving
these approaches, ML is commonly used to tune physiological
parameters, derive boundary conditions from imaging or ECG
data, or build surrogate models that reduce the computational
cost of mechanistic solvers. In a subset of hybrid digital twin
studies [51-56], ML components were typically embedded
within a mechanistic framework rather than used in isolation.
Across these studies, we observed 3 main integration patterns.
First, ML is used for parameter tuning and personalization of
mechanistic models, for example, by estimating subject-specific
parameters or boundary conditions that are then supplied to a
physics-based simulator. Second, ML agorithms are applied
for feature extraction from raw clinical data, such asimaging
or ECG signals, and the extracted features are subsequently
used to initialize or constrain the mechanistic model. Third, in
a small number of cases, ML serves as a surrogate or
complementary model that approximatesthe behavior of amore
complex mechanistic solver or is combined with mechanistic
equationsin ajoint statistical-mechanistic framework. Together,
these hybrid strategies illustrate how data-driven methods can
enhance mechanistic digital twins by improving personalization,
leveraging high-dimensional data, and reducing computational
cost.

RQ2: If theM odd isMechanistic, What Specific M odel
TypeisUsed?

Overview

Acrossthe 42 included studies, we identified multiple types of
mechanistic models used within cardiovascular digital twin
frameworks. Because individual studies often combined more
than one formulation, we classified mechanistic components
into 9 categories based on their predominant mathematical and
physiological characteristics.

Key Insights
Thekey insights are as follows:

« Electrophysiology models were the most common (19
S t u d i e S
[11,17,18,20,21,25,27,28,30,34,35,37,39,41,43,44,46,51,54]).
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These models typically used monodomain, bidomain, or
related reaction-diffusion formulations to simulate cardiac
electrical activation, sometimes coupled to downstream
mechanical effects.

«  FEM-based structural or biomechanical models were used
in 10 studies [8,18,19,26,27,29-31,33,37] to represent
myocardial or vascular deformation, geometry, and
stress-strain behavior.

« Electromechanica models, which explicitly couple
electrical activation with tissue mechanics, were identified
in 8 studies [22,26,30,32,33,52,53,55]. They supported
integrated simulation of excitation-contraction processes.

- Simplified or system-level models, which are most often
lumped-parameter formulations, were noted in 7 studies
[24,29-31,33,36,53]. They provided compact descriptions
of global hemodynamics or chamber-level dynamics,
particularly when large-scale or long-duration simulations
were required.

- Multiscdle models were reported in 7 studies
[11,22,30,33,41,44,53], linking processes across spatial or
temporal scales (eg, from cellular electrophysiology to
organ-level function).

«  Computational fluid dynamics (CFD) modelswere used in
3 studies [40,42,55] to simulate blood flow and pressure
distributions in chambers or great vessels. An additional 4
studies[19,23,24,56] used other mechanistic formulations
(eg, specialized anatomical or biophysical models), and 1
study [42] used a surrogate mechanistic model that
approximated a more complex solver. In 1 study [38],
mechani stic modeling was reported, but the specific model
type was not clearly described.

I nterpretation

Taken together, the results show that electrophysiol ogy-focused
models form the backbone of mechanistic digita twin
development in cardiol ogy, with FEM-based structural models,
lumped-parameter and multiscale formulations, and CFD models
used in complementary roles. This diversity of model types
illustrates how digital twin frameworks combine detailed
biophysical fidelity with system-level abstractions to address
specific clinical questions and RQs.

RQ3: If the Model IncludesML or Al, What Specific
Algorithmsare Applied?

Overview

Among the 42 reviewed studies, some explicitly reported using
ML or Al techniques within the digital twin framework, while
in others, the use or type of ML was absent or not clearly
specified. Because severa studies combined more than one
method, we grouped algorithms into broad families, including
DL, Bayesian methods, optimization agorithms, classical
(statistical) ML, and other ML approaches.

Key Insights
Thekey insights are as follows:

« DL wasthe most frequently reported family of methods (9
studies [27,34,44-46,48,49,53,54]). These approaches
included architectures, such as convolutional neural
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networks, neural operators, latent neural ordinary
differential equation models, and related deep architectures,
used for tasks like feature extraction, representation
learning, or surrogate modeling.

- Bayesian methodswere used in 5 studies[17,19,25,37,51],
typically intheform of approximate Bayesian computation,
Bayesian optimization, or Gaussian process—based models
for probabilistic parameter estimation and uncertainty
guantification.

« Optimization algorithms were noted in 4 studies
[19,21,36,51]. These approaches included gradient-based
schemes and metaheuristics that were used to tune model
parameters, personalize simulations, or search over
high-dimensional design spaces; in some cases, these
optimizers were tightly integrated with Bayesian
frameworks.

« Classical ML methodswereidentified in 2 studies[50,56].
These approaches included techniques, such as decision
treeand logistic or linear regression, to model interpretable
rel ationships between inputs and outcomes.

Sarani Rad et &

« Regression was explicitly highlighted as the primary
approach in 1 of the studies[50]. One study used other ML
strategies that did not fit neatly into the above categories
but still relied on data-driven learning to support digital
twin construction or personalization [46].

I nterpretation

Overdll, DL has emerged as the dominant explicitly reported
ML family in cardiovascular digital twin research, supporting
tasks such as feature extraction, surrogate modeling, and
high-dimensional inference. Bayesian and optimization-based
methods play a complementary role by enabling parameter
estimation and uncertainty-aware personalization. Classical ML
and regression, athough less common, provide more
interpretable models in selected use cases.

Figure 2 provides an integrated visualization of how primary
modeling approaches, mechanistic model types, and ML or Al
families co-occur across the included studies.

Figure 2. Relationships among modeling approaches, mechanistic model types, and machine learning (ML) or artificial intelligence (Al) methodsin
cardiovascular digital twin studies. Sankey diagram summarizing links among primary modeling approaches (research question [RQ] 1), mechanistic
model types (RQ2), and ML or Al algorithm families (RQ3) across the 42 origina research articles on cardiovascular digital twins included in this
systematic review. The left column shows the dominant modeling approach for each study (mechanistic, hybrid, or data-driven). The middle column
groups mechanistic model types into electrophysiology, finite element modeling (FEM), lumped parameter, electromechanical, computational fluid
dynamics (CFD), other mechanistic models, and “ not reported.” Theright column shows ML or Al families (deep learning, Bayesian methods, optimization
algorithms, classical ML, regression, other ML, and “type of ML not reported”). The width of each flow is proportional to the number of studies

combining the corresponding categories.

Mechanistic

Hybrid

Data-driven

RQ4: Isthe Framework or Model That is Created or
Used Open-Source?

Overview

We evaluated the extent to which cardiovascular digital twin
frameworks were shared as open-source resources. Code
availability is a key indicator of scientific transparency and
reproducibility, enabling independent validation and extension
by other researchers and clinicians.

https://cardio.jmir.org/2026/1/€78499
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Key I nsights
The key insights are as follows:

« Acrossthe 42 included studies, 16 explicitly reported that
their framework or model was available as open-source
code [17-20,25,26,30,35,37,38,41,48,51,53,54,56].

« Two studies clearly stated that the code was not publicly
released or that the implementation was proprietary [22,39].

- For the remaining 24 studies, code availability was either
not mentioned or not described in sufficient detail to
determine whether theimplementation was ble. Thus,
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lessthan half of the studies (16/42, 38%) provided explicit
evidence of open-source sharing, and in many cases,
information on code availability was incomplete.

I nterpretation

Despiteincreasing attention to reproducibility and open science,
most studies in this review did not make their digital twin
implementations publicly available. A lack of open-source code
hinders transparency, reproducibility, and reusability. The few
repositories that were shared provide valuable resources and
serve as exemplars for future cardiovascular digital twin
research.

Datalnfrastructureand Visualization (RQ5 and RQ®6)

The design and utility of cardiovascular digital twin systems
depend heavily on how patient-specific data are structured, how
outputs are visually communicated, and who theintended users
are. This section addresses RQ5 and RQ6 by examining the
types of data used to build or personalize digital twins, the
formats used to present model outputs, and the target users of
these visualizations. Together, these elements shaped the
usability, interpretability, and clinical relevance of digital twin
systemsin practice.

RQ5: What Types of Patient-Specific Data are Used to
Build or Personalize Digital Twins?

Overview

Patient-specific data underpin cardiovascular digital twin
systems by enabling individual-level modeling. We explored
the distinct categories of data used to personalize these models,
ranging from el ectrical signalsand anatomical imaging to omics
and wearable-derived data. To facilitate interpretation, the data
were grouped into consistent, semantically meaningful
categories.

Key Insights
The key insights are as follows:

- Imaging data were the most commonly used (32 studies
[8,11,17-19,21,22,24-27,29-31,33-40,42-44,46,48,49,51,53-55)).
Thesedatatypically included modalities, suchasMRI, CT,
and other structural imaging, used to reconstruct
patient-specific anatomy. Echocardiography was explicitly
reported in 2 of these studies as adedicated imaging source.

« Signal-based electrical data, primarily ECG, were used in
18 studies [8,17,21,25,27,33,36-39,43,46,48-51,53,54],

reflecting its centra role in modeling cardiac
electrophysiology and conduction abnormalities.
- Vital signs were wused in 12 studies

[17,24,26,28,29,31,33,45,48,49,53,55], and demographics,
such as age and sex, were reported in 9 studies
[17,24,27,28,33,45-48], often to support model
initialization, risk stratification, or cohort characterization.
« More detailed clinical information appeared in several
categories: omicsdatawere used in 4 studies[22,23,49,55],
lab resultswere used in 4 studies[22,28,49,55], and general
clinical data (such asclinical historiesand visit summaries)
wereusedin 3 studies[49,52,55]. Diagnosis[33,47,48] and
treatment-related data [33,47,48] (eg, information on
interventions or therapies) were each reported in 3 studies.

https://cardio.jmir.org/2026/1/€78499
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«  Sensor-based and longitudinal monitoring information was
less common: 3 studies used data from sensors [46,49,55],
and 2 studies used activity tracker data [45,49], illustrating
the early integration of wearable or home-based
measurements into digital twin personalization. Synthetic
patient data were explicitly used in 1 study [56].

I nterpretation

Overall, there is a strong reliance on imaging and ECG datato
define anatomy and electrophysiological behavior in
cardiovascular digital twins, complemented by vital signs and
demographic information for basic personalization. Omics, lab
results, richer clinical records, and wearable or sensor-derived
data are beginning to appear but remain less common,
suggesting that truly multimodal, longitudinal personalization
is still emerging. The presence of synthetic and other less
conventional data sources indicates ongoing experimentation
with aternative data strategies.

RQG6: What isthe Primary Format Used to Visually
Present Digital Twin Outputs?

Overview

We examined how digital twin outputs were visuaized in
cardiovascular studies, an essential aspect for interpretation,
user interaction, and eventual clinical integration. Each study
could use more than one visualization format, so outputs were
classified into standard categories such as static figures,
anatomical renderings, tables, dashboards, and interactive media.

Key Insights
Thekey insights are as follows:

«  Static figures were the most common visualization format
(41 studies [8,11,17-47,49-56]). These typically included
plots, error curves, comparative graphics, and screenshots
of simulations, and were primarily designed for inclusion
in scientific publications.

«  Two- or three-dimensional anatomical viewswerereported
i n 2 7 studies
[8,11,17-19,21,22,24-27,29-31,33-35,37,39,40,42-44,46,51,54,55],
where patient-specific geometries or simulated fields (eg,
activation times, strain, and flow patterns) were mapped
onto cardiac or vascular structures. These views served to
visualy link model predictions to underlying anatomy.

« Tabular formats were wused in 7 studies
[19,22,24,35,36,45,49] to report numerical outputs such as
performance metrics, parameter values, and summary
statistics.

I nterpretation

Overall, visualization of cardiovascular digital twins remains
dominated by static, publication-oriented formats such asfigures
and anatomical snapshots, with limited support for dynamic,
interactive, or dashboard-based exploration. While anatomical
views help contextualize outputs in patient-specific geometry,
the scarcity of dashboards, animations, and interactive interfaces
suggeststhat user-centric and real-time visualization capabilities
are still underdeveloped. Enhancing interactive and clinically
oriented visualization tools may be crucial for trandating digital
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twins from research prototypes into practical decision-support
systems.

Clinical Applications (RQ7 and RQ8)

We explored how digital twins were applied in clinica
cardiology (RQ7) and which cardiovascular conditions they
targeted (RQ8). It highlighted current use cases, such as
diagnosis, planning, and monitoring, and categorized the
conditions based on thematic grouping identified during full-text
analysis.

RQ7: What istheMain Clinical Application or Use Case
of Digital Twin Systems?

Overview

We explored the primary clinical applicationsof cardiovascular
digital twin systems, revealing the core motivations behind their
development and deployment. Use cases ranged from therapy
planning and risk prediction to monitoring, drug testing, and
more exploratory clinical applications. Individual studiescould
contribute to multiple application categories.

Key Insights
Thekey insights are as follows:

«  Therapy planning was the most common application (28
S t u d i e S
[8,11,17,19,20,22-25,29-34,36-39,41,45-47,49,51,54-56] ).
In these studies, digital twins were used to support the
selection, personalization, or optimization of interventions,
including device configuration, ablation strategies, or other
patient-specific treatment plans.

« Risk predicion was noted in 11 studies
[20,28,40,41,46-50,52,55], where digital twins were used
to estimate the likelihood of adverse events, treatment
responses, or disease trgjectories, often to support patient
stratification. Diagnosis-focused applicationswereidentified
in7 studies[11,45,46,48-50,54], using digital twinsto assist
in identifying underlying pathophysiology or classifying
clinical conditions.

« Surgical and device simulation was reported in 6 studies
[36,38,42,46,51,55], in which digital twins provided virtual
testbeds to explore procedural strategies or evaluate device
performancein pati ent-specific anatomies. Another 6 studies
used digital twins for drug testing [17,20,28,32,36,37].

« Monitoring applications were noted in 6 studies
[45,48-50,52,55], where digital twins contributed to disease
tracking or follow-up by integrating longitudinal data or
repeated assessments. Disease progression modeling was
explicitly highlighted in 3 studies [36,42,55], and asingle
study focused primarily on prognosis[55].

I nterpretation

Overdl, cardiovascular digital twins are most frequently
positioned as tools for therapy planning and risk prediction,
emphasizing their role in personalizing and optimizing clinical
interventions. Diagnosis, surgical or device simulation, drug
testing, and monitoring collectively demonstrate a broad range
of applications along the care pathway, from early risk
assessment to procedural planning and follow-up. As digital
twin technol ogies mature, a clearer definition and reporting of
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clinical applications will be important for understanding their
real-world impact.

RQ8: What Cardiovascular Conditions Are Studied
Using Digital Twin Systems?

Overview

We examined the range of cardiovascular conditions addressed
by digital twin systems, providing adisease-centered perspective
on where digital twin technologies are currently being applied.
Conditionswere grouped into clinically meaningful categories,
and the classification was reviewed by a physician on the
research team to ensure clinical relevance and consistency.

Key Insights
The key insights are as follows:

Arrhythmia was the most frequently studied condition (13
studies [8,11,18,20,25,28,30,34,38-41,43]). The studies
predominantly focused on atrial fibrillation and other
rhythm disorders, reflecting the suitability of digital twins
for smulating el ectrophysiol ogical mechanismsand guiding
rhythm-related interventions.

Heart failure was investigated in 9 studies
[33,36,38,41,48,51-53,55], often in the context of global
cardiac function, ventricular remodeling, or device-based
therapies. Cardiomyopathies, including hypertrophic
cardiomyopathy and other structural myocardial diseases,
werethe primary focusin 5 studies[19,22,32,35,44], where
digital twins were used to explore patient-specific
mechanics and electrophysiology.

Six studies centered on healthy or control populations
[17,43,46,49,54,56], using digital twinsto represent normal
physiology, establish reference behaviors, or provide
basalinesfor comparison with diseased states. Aortic disease
was the focus in 3 studies [26,29,42], typically involving
patient-specific modeling of the aortafor flow, wall stress,
or device evaluation.

I nterpretation

The distribution shows a strong emphasis on arrhythmia and
heart failure, conditions in which digital twins can leverage
detailed electrophysiological and hemodynamic modeling to
support diagnosis, therapy planning, and risk assessment.
Cardiomyopathies, aortic disease, and valvular disease are al'so
emerging areas of application, particularly where structural and
flow abnormalities can be represented in patient-specific models.
By contrast, hypertension, atherosclerosis, and some other
common cardiovascular conditions are only sporadically
represented, and several studies do not clearly specify the
underlying disease focus. These gaps suggest opportunities for
expanding digital twin applicationsinto a broader spectrum of
cardiovascular conditions and for improving the clarity of
disease reporting in future work.

Figure 3 summarizes how clinical applications are distributed
across cardiovascular conditions. As shown in Figure 3, therapy
planning and risk prediction are concentrated in arrhythmiaand
heart failure, whereas other conditions and applications are
represented by only a small number of studies, underscoring
the uneven distribution of digital twin work across CVDs.
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Figure 3. Heatmap of cardiovascular conditions (research question [RQ] 8) versus clinical applications (RQ7) in cardiovascular digital twin studies.
Rows show the primary cardiovascular condition modeled (eg, arrhythmia, heart failure, cardiomyopathy, aortic and valve disease, hypertension,
atherosclerosis, general cardiovascular disease [CV D], healthy/control, and not reported). Columns show the main clinical applications (eg, diagnosis,
disease progression modeling, drug testing, monitoring, prognosis, risk prediction, surgical or device simulation, and therapy planning). Cell color and
numbersindicate how many of the 42 included studies reported each condition-application combination (darker cellsindicate ahigher number of studies).
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Clinical application/use (RQ7)

Impact on Clinical Practice (RQ9)

We identified the reported clinical benefits of cardiovascular
digita twin systems, including improved accuracy,
personalization, therapy planning, and patient outcomes. The
findings were organized into key impact categoriesto highlight
where digital twins showed practical valuein care delivery.

RQ9: What Clinical I mpacts are Reported as a Result
of Using Digital Twins?

Overview

We examined the concrete clinical or clinically relevant impacts
attributed to cardiovascular digital twin systems. Rather than
focusing on intended use alone, we captured reported effects
where the use of a digital twin was described as influencing
decision-making, therapy, diagnostic performance, or other
aspects of care. Reported impactswere grouped into categories
such as improved decision-making, therapy-related benefits,
increased accuracy, and other specific outcomes.

Key Insights
Thekey insights are as follows:

«  Improved decision-making was the most frequently reported
impact (109 studies

https://cardio.jmir.org/2026/1/€78499
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[22,24,28,30-34,36,38-41,47-49,51,55,56]). In these cases,
digital twinswere described as helping clinicians compare
aternative  strategies, understand  patient-specific
mechanisms, or select interventionswith greater confidence.

« Therapy-related impacts were reported in 18 studies
[19,22-25,32,34,36,38-41,45,47-49,51,55], including
optimization of device settings, refinement of ablation
targets, adjustment of pharmacologic regimens, and more
tailored procedural planning based on virtual simulations.

« Increased accuracy was explicitly identified in 6 studies
[31,45,48,49,54,55], referring to improvementsin predictive
performance, better correspondence between simulations
and measured clinical data, or more faithful reproduction
of patient-specific physiology. Two studies[49,50] reported
a faster diagnostic process, where digital twin-supported
workflows were associated with quicker identification or
clarification of clinical conditions.

Figure 4 illustrates how reported clinical impacts are distributed
across cardiovascular conditions. Improved decision-making
and therapy-related impacts were concentrated in arrhythmia
and heart failure, whereas many other condition-impact
combinations were represented by only one or two studies,
highlighting the uneven evidence base across disease areas.
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Figure4. Heatmap of cardiovascular conditions (research question [RQ] 8) versusreported clinical impacts (RQ9) in cardiovascular digital twin studies.
Rows represent the primary cardiovascular condition modeled by the digital twin (eg, arrhythmia, heart failure, cardiomyopathy, aortic and valve disease,
hypertension, atherosclerosis, general cardiovascular disease [CV D], healthy/control, and not reported). Columns represent impact categories reported
by study authors (faster diagnosis, improved decision-making, increased accuracy, impact not reported, other impact, and therapy-related impact). Cell
color and numbersindicate how many of the 42 included studies reported each condition-impact combination (darker cellsindicate a higher number of

studies).
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I nterpretation

The most commonly reported benefits of cardiovascular digital
twins relate to improved clinical decision-making and
therapy-related impacts, suggesting that these systems are
beginning to influence how clinicians choose and personalize
interventions. Explicit gains in accuracy and diagnostic speed
are less frequently reported but point toward the quantitative
advantages of model-based approaches when they are carefully
evaluated. At the same time, the substantial number of studies
with no clearly articulated clinical impact indicates that much
of the current literature remains focused on technical feasibility
and validation rather than demonstrated downstream effects on
care processes or patient outcomes. Strengthening the evidence
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Clinical impacts (RQ9)

base around measurable clinical benefits, such as improved
decision quality, optimized therapy, and better outcomes, will
be essential for wider clinical adoption.

Figure 5 shows that improved decision-making is the dominant
reported impact across most cardiovascular conditions,
particularly heart failure and arrhythmia, and that theseimpacts
are almost always communicated through static figures and 2D
or 3D anatomical views rather than dashboards, animations, or
interactive interfaces. Therapy-related impacts and gains in
accuracy are more sparsely reported and similarly rely on
conventional publication-style visualizations, underscoring the
limited development of user-facing, real-timevisual tools, even
in high-risk clinical scenarios.
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Figure 5. Relationships among cardiovascular conditions, reported clinical impacts, and visualization formats in cardiovascular digital twin studies.
Sankey diagram summarizing links among cardiovascular conditions (research question [RQ] 8), reported clinical impacts (RQ9), and primary visualization
formats (RQ6) across the 42 original research articles on cardiovascular digital twins included in this systematic review. The left column shows the
main conditions modeled by the digital twins (eg, heart failure, arrhythmia, valve disease, cardiomyopathy, hypertension, atherosclerosis, general
cardiovascular disease [CV D], and healthy/control populations). The middle column displays impact categories reported by the authors (eg, improved
decision-making, therapy-related impact, increased accuracy, faster diagnosis, and other impact). The right column shows the dominant visualization
formats used to present model outputs (static figures, 2D/3D anatomical views, tabular displays, analytics dashboards, animated/video outputs, and
interactive interfaces). The width of each flow is proportional to the number of studies combining the corresponding categories.
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Barrierstolmplementation and Ethical Considerations
(RQ10 and RQ11)

We examined the key challenges limiting the adoption of
cardiovascular digital twins, including technical barriers (RQ10)
and ethical or legal concerns (RQ11). These issues highlighted
the need for improved scal ahility, transparency, and responsible
usein clinical settings.

RQ10: What Limitations or Practical and Technical
Barriers are Described?

Overview

We identified the limitations and implementation barriers of
cardiovascular digital twin systems asreported by theincluded
studies. Rather than listing every individual issue, reported
limitations were grouped into conceptually meaningful
categories, such as model assumptions, computational
constraints, data-rel ated challenges, and integration or usability
problems. This categorization helped highlight systemic
obstacles that recur across the field.

Key Insights
The key insights are as follows:

«  Model assumptions and structural simplifications were the
most  frequently cited limitations (26 studies
[8,11,17,19-22,24,25,27-33,35,36,39,41,43,44,46,47,51,53)).
These concerns included oversimplified anatomy or
physiology, restrictive boundary conditions, and reduced
model complexity that may limit generalizability or omit
important mechanisms.
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Computational cost was highlighted in 21 studies
[11,17,21,22,26,27,29-31,33,36,37,39,41,42,46,49,51,53,54,56],
where authors noted long simulation times, high hardware
requirements, or overall computational burden that can
impede large-scal e studies and real-time or near—rea -time
clinical use.

Data-related challenges were prominent, with 16 studies
[19,22,25,27-30,36,39,40,43,45,47,50,55,56]  reporting
issues with data quality or availability, such asincomplete
or noisy clinical inputs, limited access to high-resolution
or longitudinal data, and difficulties in acquiring truly
personalized datasets. Limited validation was also
mentioned in 16 studies
[24,25,27-29,31,33-36,39,40,45,47,53,55], reflecting
concerns about small sample sizes, restricted cohorts,
synthetic data, or a lack of robust testing in real-world
clinical environments.

More specific barriers included a lack of rea-time
performance in 5 studies [33,42,50,54,55], indicating that
even when models were accurate, their latency or compute
demands were not compatible with time-sensitive clinical
workflows. Workflow integration problemswereidentified
in 4 studies [30,47,51,55], focusing on the challenges of
embedding digital twinsinto existing clinical systemsand
processes. Clinician usability challenges were noted in 3
studies [45,49,55], where interfaces or outputs were
considered difficult to interpret or not well aligned with
clinical practice. High infrastructure cost was noted in 2
studies[49,53], and data security or privacy concernswere
explicitly mentioned in 1 study [49].
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I nterpretation

Themost common limitations—strong model assumptions, high
computational cost, and dataand validation constraints—reflect
the technical and methodological complexity of deploying
cardiovascular digital twinsin practice. Simplifying assumptions
and limited data can undermine generalizability, while
computational burden and lack of real-time performance can
restrict clinical usability. Integration issues, usability challenges,
infrastructure demands, and security concerns, though mentioned
less often, highlight important practical barriersthat will become
more pressing as digital twins move closer to clinical
deployment. Addressing these limitations through improved
model design, better data infrastructure, efficient algorithms,
and user-centered integration will be essential for scalable,
clinically viable digital twin systems.

RQ11: What Legal, Ethical, or Data Gover nancelssues
are Raised Regarding Digital Twins?

Overview

We explored the ethical, legal, and data governance concerns
raised in studiesinvolving cardiovascular digital twin systems.
Potential issues included privacy protection, regulatory
compliance, informed consent, algorithmic transparency, and
fairness. Reported concerns were grouped into categories to
highlight common themes and gaps in current practice.

Key Insights
Thekey insights are as follows:

« Only asmall subset of studies explicitly discussed legal,
ethical, or governance issues. Privacy and data protection
were the most frequently mentioned topics, identified in 4
studies [47,49,50,55], with references to compliance
frameworks, such as General Data Protection Regulation
(GDPR) and Hedth Insurance Portability and
Accountability Act (HIPAA), and concerns about
safeguarding sensitive patient data in the context of
high-dimensional digital representations.

« Some studies raised other specific issues. Two studies
discussed ethical or legal chalenges in general terms

Sarani Rad et &

[30,47], while another identified potential algorithmic bias,
described problems or open questions around informed
consent, and highlighted concerns about model transparency
and the need for explainable or interpretable digital twin
behavior [55].

I nterpretation

Overal, explicit discussion of legal, ethical, and datagovernance
aspects remains limited in the cardiovascular digital twin
literature. While privacy and regulatory compliance are
beginning to appear as concrete concerns, far fewer studies
engage with broader questions around algorithmic bias,
transparency, informed consent in the context of complex
modeling, or downstream legal responsibilities. Asdigital twin
systems move closer to clinical deployment and real-world
decision support, more systematic attention to these dimensions,
including fairness, accountability, liability, and data stewardship,
will be critical to ensure trustworthy and responsible adoption.

Risk of Bias Assessment

Therisk of biaswas assessed for all included studies using the
tool corresponding to the underlying study design. Among the
42 studies eval uated, 38 were computational or simulation-based
studies assessed using the custom modeling checklist
(8117181902127 87203031 3R 37BAN P AAABBEI-E3A T,
2 were prediction-modeling studies evaluated using the
PROBAST [49,50], and 2 were observational cohort studies
evaluated using the ROBINS-I [39,47].

Table 2 summarizes the distribution of overall risk-of-bias
judgments across the 3 tools. For simulation and digital twin
modeling studies, “unclear” wasthe most frequent overall rating
(22/38, 58%), followed by “high risk” (16/38, 42%). The
domains contributing most frequently to elevated risk included
data representativeness, validation strategy, and sample
size/overfitting. No modeling study received an overall low-risk
judgment, reflecting commonly observed methodological
limitations in data availability, external validation, and
reproducibility practices across computational literature.

Table. Summary of overall risk-of-bias judgments across the included studies.

Tool Total studies (N=42), n Unclear risk, n (%) High risk, n (%)
Custom modeling checklist 38 22 (58) 16 (42)
PROBAST? 2 0(0) 2(100)
ROBINS-IP 2 1(50) 1(50)

3PROBAST: Prediction Model Risk of Bias Assessment Tool.
PROBINS-I: Risk of Biasin Non-Randomized Studies - of Interventions.

Both prediction-modeling studies assessed with the PROBAST
were rated as having a high risk of bias, predominantly due to
concerns in the analysis and outcome domains, including
insufficient handling of model calibration, unclear predictor
specification, and absence of prespecified analysis protocols.

Among the 2 observational cohort studies evaluated using the
ROBINS-I, one was judged as having a high risk of bias,

https://cardio.jmir.org/2026/1/€78499

primarily due to serious confounding and selective reporting,
while the other was rated as unclear.

Figures 6 and 7 present the traffic-light and summary plots,
respectively, for al 38 modeling studies assessed using the
custom modeling checklist. These visuaizations highlight
consistent methodological limitations across key domains,
particularly external validation and representativeness of data
inputs. Traffic-light and summary plots for the PROBAST and
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ROBINS-| assessments are provided in Figures 8 and 9,
respectively.
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A structured visualization workflow was implemented using
therobvistool, which standardizesthe graphical representation
of domain-level and overall judgments and supports transparent
reporting of risk-of-bias evaluations.
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Figure 6. Risk of bias assessment (traffic-light plot) for modeling studies
[8,11,17,18,19,20,21-27,28,29,30,31,32-34,35,36,37,38,40,41,42,43,44,45,46,48,51-53,54,55,56]. Traffic-light plot for the 38 simulation/digital twin

modeling studies assessed using the custom modeling checklist. Domain-level judgments are categorized as low, unclear, or high. The plot has been
generated using the robvis tool [16].
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Figure 7. Risk of bias assessment (summary plot) for modeling studies
[8,11,17,18,19,20,21-27,28,29,30,31,32-34,35,36,37,38,40,41,42,43,44,45,46,48,51-53,54,55,56]. Summary plot for the 38 simulation/digital twin
modeling studies assessed using the custom modeling checklist. Domain-level judgments are categorized as low, unclear, or high. The plot has been
generated using the robvis tool [16].
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Figure8. Risk of bias assessment for prediction-modeling studies (Prediction Model Risk of Bias Assessment Tool [PROBAST]) [49,50]. Traffic-light
plot (A) and summary plot (B) for the 2 prediction-modeling studies evaluated using the PROBAST instrument. Judgments are shown across the 4
PROBAST domains (participants, predictors, outcome, and analysis) and the overall study-level rating. Visualizations are created using the robvis tool
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Figure 9. Risk of bias assessment for observational cohort studies (Risk of Bias in Non-Randomized Studies - of Interventions [ROBINS-1]) [39,47].
Traffic-light plot (A) and summary plot (B) for the 2 observationa cohort studies evaluated using the ROBINS-I tool. Judgments are shown across the
7 ROBINS-| bias domains and the overall risk-of-bias rating. Visualizations are created using the robvis tool [16].
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Discussion Technological Foundations and M odeling Strategies

Principal Findings

This systematic review synthesized findings from 42 studies
and showed that cardiovascular digital twin technology is
progressing rapidly but remains largely preclinicad and
methodologically heterogeneous. Most systems relied on
mechanistic models, with asmaller subset incorporating explicit
ML or hybrid mechanistic—data-driven designs. Applications
clustered around arrhythmia (13/42, 31%), heart failure (9/42,
21%), and therapy planning (28/42, 67%), yet relatively few
studies reported real-world clinical deployment, rigorous
validation (16/42, 38%), or patient-level outcomes, underscoring
the gap between technical innovation and routine clinical use.

Across 11 RQs spanning modeling foundations, data
infrastructure, clinical applications, clinical impact, and
implementation challenges, the review identified steady
technical progress alongside persistent limitations in data
quality, external validation, usability, and ethical governance.
Our structured risk-of-bias assessment further highlighted that
most modeling and prediction studies were judged as having
unclear or high risk of bias, particularly in relation to data
representativeness, validation strategies, and anaysis
procedures. Together, these findings suggest that cardiovascular
digital twins are scientifically promising but not yet ready for
widespread clinical tranglation.
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M echanistic model sform the backbone of current cardiovascular
digital twins. Electrophysiology, finite-element structural
modeling, lumped-parameter  formulations, multiscale
frameworks, and CFD-based flow simulations were frequently
combined to capture different physiological scales and
processes. The predominance of mechanistic approachesreflects
the central importance of physiological interpretability and
explicit biophysical assumptions in cardiology, where
understanding causal mechanisms is often as important as
prediction performance.

Hybrid designsand explicit ML or Al integrationswere present
but less common than might be expected given the broader
trendsindigital health. Only aminority of studies (18/42, 43%)
clearly described ML algorithms, with DL (9/42, 21%), Bayesian
methods (5/42, 12%), and optimization al gorithms (4/42, 10%)
used for tasks such as parameter estimation, feature extraction,
surrogate modeling, and uncertainty quantification. Many other
papersreferred to “ML” or “Al” without specifying algorithm
families or training procedures, limiting reproducibility and
comparability. Open-source dissemination was aso limited;
less than half of the studies (16/42, 38%) provided accessible
code, constraining independent verification, reuse, and
benchmarking.

Data I nfrastructure and Visualization

Personalization of cardiovascular digital twins relied heavily
on structural imaging (32/42, 76%) and electrical signals(18/42,
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43%). Imaging data (most often MRI or CT, with occasional
echocardiography) enabled patient-specific  anatomical
reconstruction, while ECG and related el ectrical measurements
supported modeling of activation patterns and conduction
abnormalities. Vital signs (12/42, 29%) and demographic
variables (9/42, 21%) were commonly used as basic covariates,
but richer data sources appeared in only a subset of studies
(omics: 4/42, 10%,; lab results: 4/42, 10%,; detailed clinical
records: 3/42, 7%; and wearable/sensor streams: 4/42, 10%).
This pattern suggests that many digital twins remain anchored
in traditional imaging and electrophysiology pipelines, with
multimodal, longitudinal dataintegration still in an early stage.

Visualization practices were predominantly static and
publication-oriented. Most studies communicated digital twin
outputsthrough static figures (41/42, 98%), anatomical overlays
(27142, 64%), or tables summarizing simulation results (7/42,
17%). Only afew described dashboards, dynamic animations,
or interactiveinterfacesthat would support real-time exploration
or clinical decision-making. Asaresult, the“front end” of many
digital twin systems remains geared toward researchers rather
than clinicians or patients, which may hinder adoption even
when the underlying models are sophisticated.

Clinical Applications and Target Conditions

Clinically, cardiovascular digital twins were most frequently
positioned as tools for therapy planning (28/42, 67%), risk
prediction (11/42, 26%), and monitoring (6/42, 14%), with
additional roles in diagnosis (7/42, 17%), surgical or device
simulation (6/42, 14%), and drug testing (6/42, 14%).
Conditions, such as atria fibrillation and other arrhythmias
(13/42, 31%), heart failure (9/42, 21%), cardiomyopathy (5/42,
12%), and aortic disease (3/42, 7%), were most commonly
represented, reflecting both their high burden and the suitability
of these conditions for simulation-based assessment. Severa
studies (6/42, 14%) used digital twins to model healthy or
control populations, providing physiological baselines and
enabling comparison with diseased states.

At the same time, important cardiovascular domains remain
underrepresented. Hypertension, atherosclerosis, congenital
heart disease, and some vavular pathologies appeared relatively
rarely or were only indirectly addressed, despite their major
contribution to global cardiovascular morbidity. Furthermore,
in some studies (4/42, 10%), the underlying clinical condition
was not clearly specified, blurring the line between generic
modeling exercises and disease-focused digital twin applications.
This uneven coverage limits our ability to generalize digital
twin findings across the broader spectrum of CVD.

Impact on Clinical Practice

Reported clinical impacts aligned with the conceptual promise
of digital twins but were often indirect or inferred. The most
commonly cited benefits were improved decision-making
(19/42, 45%) and therapy-related impacts (18/42, 43%),
including better selection of interventions, refined device
configurations, and more personalized procedural planning.
Some studies (6/42, 14%) reported increased accuracy of
predictionsor simulations, and asmall number of studies (2/42,
5%) documented faster diagnosis or workflow advantages.
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However, very few studies (4/42, 10%) linked digital twin use
to robust patient-level outcomes such as mortality,
hospitalization, and long-term symptom burden. Most evidence
came from retrospective analyses, in silico comparisons, or
small proof-of-concept applications rather than prospective,
real-world evaluations. Consequently, whiledigital twins appear
to enhance mechanistic understanding and may plausibly
improve decision quality, the causal pathway from digital twin
useto improved patient outcomesremainslargely hypothetical.
Thisobservation was reinforced by the risk-of -bias assessments,
which highlighted frequent limitations in sample size, external
validation, and outcome measurement.

Barrierstolmplementation and Ethical Consider ations

Several recurring barriers emerged across the included studies.
Strong model assumptions and structural simplifications, while
often necessary for tractability, raise questions about
generalizability to broader populations or clinical settings. High
computational cost and limited real-time performance constrain
scalability and integration into time-sensitive workflows,
particularly in acute care or interventional environments.
Data-quality issues, including incomplete or noisy inputs and
limited access to comprehensive, longitudinal datasets, further
restrict personalization and increase uncertainty.

Workflow integration and clinician usability remain significant
challenges. Only a minority of studies (4/42, 10%) described
how digital twin systems might be embedded within electronic
health records, imaging systems, or existing decision-support
tools, and even fewer studies (3/42, 7%) reported formal
usability testing with clinicians. Ethical, legal, and governance
issueswere discussed explicitly in only asmall subset of articles
(4/42, 10%), primarily in relation to privacy and data protection
frameworks such as GDPR and HIPAA. Isolated studies
mentioned algorithmic bias, informed consent, or transparency
concerns (1/42, 2%), but systematic engagement with liability,
accountability, data ownership, and equity was rare, despite
their importance for future clinical deployment.

Sources and I mplications of Heterogeneity

Across the included studies, we observed substantial
heterogeneity in how cardiovascular digital twins were
conceptualized, implemented, and evaluated. This variability
spanned multiple dimensions, including the definition and scope
of the “digital twin,” the underlying modeling strategies (eg,
electrophysiology, finite-element, lumped-parameter, multiscale,
CFD, and hybrid ML-mechanistic designs), the types and
combinations of data modalities used for personalization, the
clinical applications and disease targets, and the choice of
validation approaches and outcome metrics. As a result, the
findings are difficult to compare directly across studies, and a
guantitative synthesis or meta-analysisis not appropriate. This
heterogeneity also limitsthe generalizability of individua results
and makes it challenging to derive standardized performance
expectations for cardiovascular digital twins. Future work will
benefit from clearer definitions, minimum reporting standards,
and shared benchmarksto enable amore systematic comparison
and aggregation of evidence.
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Implications and Future Directions

The findings of this review suggest that cardiovascular digital
twins are technically promising but not yet consistently
validated, standardized, or integrated into routine care.
Heterogeneity in modeling approaches, data inputs, validation
strategies, and reporting practices limits comparability and
makes it difficult to draw firm conclusions about real-world
effectiveness.

Future work should focus on strengthening clinical validation
in real-world settings, ideally through prospective and multisite
studies that link digital twin use to patient outcomes and
workflow changes. In parallel, clearer definitions of what
congtitutes a digital twin; shared performance metrics, and
minimum reporting standards for models, data, and validation
would support meaningful comparisons and regulatory
assessments. Methodological transparency and user-centered
design are also essential. Explainable or interpretable modeling
pipelines and clinician-oriented interfaces arelikely to be critical
for trust and adoption.

Finally, ethical and equity considerations need to be addressed
proactively. Most existing studies draw on narrow populations
and rarely examine algorithmic bias, informed consent for
complex modeling, or long-term data governance. Future
research should deliberately include diverse populations and
care settings; evaluate generalizability across subgroups; and
embed privacy protection, transparency, and fair data use into
the design and deployment of digital twin systems. Closer
collaboration with regul ators and health care organi zations will
beimportant to ensure that these technical and ethical advances
tranglate into safe, accountable, and clinically useful tools.

Limitations of This Review

While comprehensive, this review may have missed relevant
studies, especially studies published in non-English sources or
proprietary implementations outside academic literature.
Reporting heterogeneity also limited the comparability of
validation and outcome data. Asthefield evolvesrapidly, some
emerging developments may not have been captured in the
included studies.

Although we conducted a structured risk-of-bias appraisal using
a custom modeling checklist for simulation studies, the
PROBAST for prediction models, and the ROBINS-I for
observational cohort studies, these tools were not originally
designed for all types of cardiovascular digital twin research
and required judgment-based adaptation. In addition, the
substantial heterogeneity in study designs, data sources, and
evaluation strategies precludes quantitative synthesis and
indicates that our risk-of-bias judgments should be interpreted
as broad indicators of methodological robustness rather than
definitive ratings for individual studies.

Sarani Rad et &

This review was based on searches of major bibliographic
databases and Google Scholar but did not include dedicated,
systematic searches of clinical trial registries (eg,
ClinicalTrials.gov), conference proceedings, or specialized
grey-literature repositories (eg, dissertation or technical report
databases). Although Google Scholar can index some gray
literature and conference outputs, our screening was not
designed to comprehensively capture these sources. Asaresult,
ongoing trials, conference-only  presentations, and
nontraditionally published or proprietary digita twin
implementations may be underrepresented in this synthesis.

Finally, the review protocol was not registered on a public
platform, such as the Open Science Framework (OSF), which
may limit reproducibility and transparency. Future work would
benefit from prospective protocol registration to reducetherisk
of selective reporting and enhance methodological rigor.

Conclusion

This systematic review mapped the technological, clinical, and
implementation landscape of cardiovascular digital twin systems
across 42 original studies. We found that most digital twinsare
grounded in mechanistic modeling, with limited but growing
use of hybrid and Al-driven approaches. Personalization relies
predominantly on imaging and electrical signals, and
applications are concentrated in therapy planning, risk
prediction, and monitoring for arrhythmia and heart failure.
Although the reported impacts on decision-making and therapy
optimization are promising, evidence for downstream
patient-level benefits remains sparse.

At the same time, substantial heterogeneity in model
architectures, datamodalities, clinical use cases, and validation
strategi es—combined with incompl ete reporting of algorithms,
data, and code—limits comparability across studies and
precludes quantitative synthesis. Key barriers to clinical
trandation include strong modeling assumptions, high
computational cost; constrained data quality and availability;
and limited real-time performance, workflow integration, and
usability. Ethical, legal, and governance issues are only rarely
addressed explicitly, with most attention focused on privacy
and data protection.

Taken together, these findings suggest that cardiovascular digital
twins are technically mature enough to support sophisticated,
patient-specific simulations but are not yet ready for routine
care. Realizing their potential for precision cardiology will
require coordinated progress in standardized evaluation and
reporting, rigorousclinical and external validation, user-centered
and explainabledesign, robust data governance, and engagement
with regulators and health systems. With the strengthening of
these elements, digital twins may evolve from exploratory
research tools into trusted, clinically integrated assets for
individualized cardiovascular diagnosis, risk assessment, and
treatment planning.
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