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Abstract
Background: Digital twin systems are emerging as promising tools in precision cardiology, enabling dynamic, patient-spe-
cific simulations to support diagnosis, risk assessment, and treatment planning. However, the current landscape of cardiovas-
cular digital twin development, validation, and implementation remains fragmented, with substantial variability in modeling
approaches, data use, and reporting practices.
Objective: This systematic review aims to synthesize the current state of cardiovascular digital twin research by addressing 11
research questions spanning modeling technologies, data infrastructure, clinical applications, clinical impact, implementation
barriers, and ethical considerations.
Methods: We systematically searched 5 databases (PubMed, Scopus, Web of Science, IEEE Xplore, and Google Scholar)
and screened 330 records. Forty-two original studies met the predefined eligibility criteria and were included. Data extraction
was guided by 11 thematic research questions. Mechanistic and artificial intelligence (AI) or machine learning (ML) modeling
strategies, data modalities, visualization formats, clinical use cases, reported impacts, limitations, and ethical or legal issues
were coded and summarized. Risk of bias was evaluated using a custom checklist for modeling studies, the Prediction Model
Risk of Bias Assessment Tool (PROBAST) for prediction models, and the Risk of Bias in Non-Randomized Studies - of
Interventions (ROBINS-I) for observational studies.
Results: Most digital twins (29/42, 69%) relied on mechanistic models, while hybrid mechanistic–data-driven approaches
and purely data-driven designs were less frequent (13/42, 31%). Only 18 studies explicitly described ML or AI, most often
deep learning, Bayesian methods, or optimization algorithms. Personalization depended primarily on imaging (32/42, 76%)
and electrocardiography or other electrical signals (18/42, 43%). Visualization was dominated (41/42, 98%) by static figures
and anatomical snapshots. Clinically, digital twins were most commonly applied to therapy planning, risk prediction, and
monitoring. Reported benefits focused on improved decision-making and therapy-related impacts, with occasional (8/42,
19%) reports of increased accuracy or faster diagnosis, but there was limited evidence for downstream improvements in
patient outcomes. Key barriers included strong model assumptions and simplifications; high computational cost; data quality
and availability constraints; limited external validation; and challenges in real-time performance, workflow integration, and
usability. Explicit discussion of ethical, legal, or governance issues was rare (7/42, 17%).
Conclusions: Cardiovascular digital twins show substantial potential to advance precision cardiology by linking personalized
physiological models with clinical decision support, particularly for therapy planning and risk prediction in arrhythmia
and heart failure. However, real-world implementation is constrained by methodological heterogeneity, restricted data and
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validation practices, limited openness of code and models, and sparse engagement with ethical and governance questions.
Future research should prioritize standardized evaluation frameworks, robust clinical validation, interoperable and user-cen-
tered system design, and ethically grounded, patient-centered development to realize the full clinical value of digital twin
systems.
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Introduction
In recent years, the integration of digital twin technology into
health care has opened new avenues for precision medicine,
particularly within the field of cardiology. A digital twin is
a dynamic, virtual representation of a physical system that is
continuously updated with real-time data, advanced computa-
tional models, and artificial intelligence (AI) analytics [1,2].
In the context of health care, digital twins serve as virtual
replicas of patients, organs, or biological systems, encompass-
ing multidimensional, patient-specific information to inform
clinical decisions [3-5].

Cardiovascular diseases (CVDs) remain a leading cause
of morbidity and mortality worldwide, underscoring the
need for innovative, patient-centric approaches to diagnosis,
treatment, and management [6,7]. The application of digital
twins in cardiology involves the creation of virtual repli-
cas of the human heart by integrating anatomical, phys-
iological, and molecular data. These models are capable
of simulating electrical activity [8], mechanical function,
hemodynamics, and drug responses [9,10]. By combining
data from cardiac imaging (eg, magnetic resonance imaging
[MRI] and computed tomography [CT]), electrocardiography
(ECG), hemodynamic profiles, electrophysiology recordings,
electronic health records, and omics assessments, digital twin
systems provide a basis for precision simulation and virtual
experimentation [11].

These capabilities make cardiac digital twins uniquely
positioned to support personalized treatment plans, enabling
applications such as risk stratification, therapy optimization,
surgical simulation, and drug safety testing. The integration
of AI, particularly machine learning (ML) and deep learning
(DL), has further improved the scalability and performance of
digital twins in real-world applications.

However, despite promising technical progress, substan-
tial challenges remain. These include (1) high computa-
tional costs and complex personalization pipelines; (2) data
heterogeneity and interoperability limitations; (3) lack of
standardized validation protocols and clinical benchmarks;
and (4) ongoing concerns regarding privacy, explainability,
and regulatory oversight.

While multiple reviews have surveyed digital twins
in general health care [12] or addressed cardiovascular
simulation from a technical standpoint [11], a comprehen-
sive, domain-specific synthesis integrating technical, clinical,
and implementation perspectives in personalized cardiology
remains lacking.

To address this gap, we conducted a systematic review
following the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) 2020 guidelines
[13,14]. This review explicitly examines original research
articles on cardiovascular digital twin systems, emphasiz-
ing personalization, clinical relevance, and implementation
feasibility. Our study followed a two-stage methodology:

1. Screening phase: We screened 330 articles from
5 databases (PubMed, Scopus, IEEE, Web of Sci-
ence, and Google Scholar). After removing duplicates,
non-English entries, and publications lacking abstracts
or relevant context, 42 articles were retained.

2. Review phase: Three independent reviewers assessed
full-text articles based on structured research questions
(RQs). Each article was evaluated for relevance to 11
themes covering technology, data integration, clinical
application, validation, ethics, and data sources.

The following RQs guided our review:
• RQ1-RQ4: What are the technological foundations

of cardiovascular digital twins, including modeling
strategies, AI integration, and open-source availability?

• RQ5 and RQ6: How is patient-specific data structured
and visualized?

• RQ7 and RQ8: What are the clinical applications and
disease targets of digital twins?

• RQ9: What clinical impacts have been reported as a
result of digital twin use?

• RQ10 and RQ11: What barriers, limitations, and ethical
or legal considerations are acknowledged in current
studies?

The aim of this study was to systematically review the
existing literature on cardiovascular digital twins to iden-
tify current technologies, clinical uses, and challenges to
implementation.

Methods
Overview
This systematic review was designed and conducted
following the PRISMA 2020 statement (Checklist 1). The
protocol was developed in advance and used a transpar-
ent, reproducible approach to article retrieval, screening,
and extraction. It was structured around 11 domain-specific
RQs targeting the technological, clinical, and implementation
dimensions of digital twin systems in cardiology.
Data Sources and Search Strategy
A comprehensive literature search was performed across 5
major academic databases: PubMed, Scopus, Web of Science,
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IEEE Xplore, and Google Scholar. These platforms were
selected to ensure broad interdisciplinary coverage across
biomedical, engineering, and computational sciences. The
databases were searched between January and early February
2025, restricting records to publications from 2010 onwards.
Only the first 115 results sorted by relevance were screened
for Google Scholar due to indexing limitations. The reference
lists of relevant reviews were also scanned to ensure inclusion
of key foundational articles.

Data collection and initial preprocessing were streamlined
using Triple-A software [15], which served as the main tool
for managing and organizing the retrieved records.

The search strategy used Boolean combinations of
controlled vocabulary (eg, MeSH) and free-text terms as
follows: (“digital twin” OR “virtual heart” OR “patient-spe-
cific model”) AND (“cardiology” OR “cardiac” OR “heart”
OR “cardiovascular”) AND (“simulation” OR “personalized
medicine” OR “precision medicine” OR “in silico”).

To increase transparency, we conceptually structured the
search according to the Population, Intervention, Comparison,
and Outcome (PICO) framework:

• Population (P): Patients with CVDs, including
arrhythmia, heart failure, ischemic heart disease,
cardiomyopathy, and related conditions.

• Intervention (I): Digital twin systems designed for
diagnosis, simulation, personalization, monitoring, risk
prediction, or therapy planning in cardiology.

• Comparison (C): Not applicable, as the review did not
evaluate digital twins against alternative interventions
or standard care.

• Outcome (O): Descriptive outcomes related to
modeling strategies, data infrastructure, clinical
applications, reported clinical impact, implementation
barriers, and ethical or governance considerations.

These PICO elements informed the design of our search and
eligibility criteria, while the detailed content of the review
was organized around 11 thematic RQs (RQ1-RQ11).

All search results were exported to a centralized reference
manager and screened using Microsoft Excel. The complete
search strings for the databases are provided in Multimedia
Appendix 1.
Eligibility Criteria
Articles were included if they (1) were original empirical
research studies, including journal articles, conference papers,

and preprints; (2) reported on the development, implementa-
tion, or evaluation of digital twin systems in health care; (3)
focused on cardiovascular applications, including anatomical,
physiological, or functional heart modeling; (4) were related
to individualized or personalized medicine, clinical decision-
making, or patient-specific therapies; and (5) were published
in English and provided a structured abstract.

Articles were excluded if they (1) were review papers,
commentaries, editorials, book chapters, or theoretical
position pieces; (2) did not focus on cardiovascular sys-
tems (eg, neurological or orthopedic digital twins); (3) were
not available in full text or lacked an identifiable abstract;
(4) were duplicate entries across databases; and (5) were
published in languages other than English, including those
labeled as “unspecified” or “null.”

These criteria were iteratively refined during the pilot
screening of 50 records.

We did not apply the exclusion criteria based on study
design, as the aim of this review was to comprehensively
synthesize diverse contributions to the digital twin field,
including conceptual, technical, and applied studies, without
limiting the scope to any particular methodological frame-
work.
Screening and Article Selection
The initial search returned 330 records. A multistep screening
protocol was applied:

• Phase 1 (title and abstract screening): Three reviewers
independently screened articles for relevance. Discrep-
ancies were resolved by group discussion and majority
vote.

• Phase 2 (eligibility review): Of 44 records identified
in phase 1, 2 records were excluded. A final set of 42
articles was included in the synthesis.

Reviewers used a shared Microsoft Excel spreadsheet with
predefined drop-down fields for coding decisions. Interre-
viewer consistency was monitored, and a senior reviewer
adjudicated disagreements. The filtering questions used
during study selection are presented in Table 1. The complete
list of all screened records, along with their inclusion or
exclusion status, is provided in Multimedia Appendix 2.

Table 1. Filtering questions used during study selection for the systematic review of cardiovascular digital twin research.
Screening questiona Decision criteria
Filtering question 1: Does the study relate to digital twins in health care
or medicine?

Include if the study discusses digital twins applied in health care contexts.

Filtering question 2: Does the study specifically address the use of
digital twins in cardiology?

Include if the study focuses on cardiovascular applications of digital twins.

Filtering question 3: Does the study involve personalized or patient-
specific applications in cardiology?

Include if the study discusses patient-specific or precision medicine
approaches.

aEach question aligns with predefined inclusion and exclusion criteria applied across titles, abstracts, and full texts.
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RQs and Data Extraction
Data extraction was organized around 11 RQs, which were
structured into six thematic categories:

1. Technological foundations: modeling methods (RQ1),
mechanistic model types (RQ2), ML algorithms (RQ3),
and open-source availability (RQ4)

2. Data infrastructure and visualization: patient-specific
data (RQ5) and visualization formats (RQ6)

3. Clinical applications and conditions: clinical use cases
(RQ7) and cardiovascular conditions addressed in
digital twin studies (RQ8)

4. Clinical impact: reported outcomes and benefits (RQ9)
5. Implementation challenges: technical and validation

barriers (RQ10)
6. Ethical considerations: legal, privacy, and governance

issues (RQ11)
Each reviewer used a structured extraction form, built in
Excel, to code articles across multiple predefined categories
(eg, “FEM,” “ECG,” and “Heart Failure”) using a controlled
vocabulary. Note fields allowed for contextual elaboration
and inductive theme discovery.

Categories were not mutually exclusive, allowing multiple
responses per article. The full data extraction form is provided
in Multimedia Appendix 3.

Data Extraction Process
Data extraction followed a structured workflow as follows:

1. Full-text review: Each selected study was fully
reviewed to extract methodological details and research
contributions.

2. Thematic classification: Studies were assigned to
predefined thematic categories based on their focus area
and objectives.

3. Double-reviewer validation: Three independent
reviewers extracted data; any conflicts were resolved
via discussion.

4. Database compilation: Extracted data were compiled
into a structured dataset for further analysis.

Risk of Bias
The risk of bias of the included studies was assessed
using the instrument most appropriate for the underlying
study design. Three distinct tools were used. First, simu-
lation-based and modeling-oriented studies, such as those
involving digital twins, mechanistic models, or computational
pipelines, were evaluated using a custom modeling checklist,
which was developed to capture methodological risks specific
to computational modeling (eg, data representativeness,
validation strategy, overfitting, and reproducibility). Second,

prediction-modeling studies were appraised using the
Prediction Model Risk of Bias Assessment Tool (PRO-
BAST), which evaluates risk of bias across 4 domains:
participants, predictors, outcome, and analysis. Finally,
observational cohort studies were assessed using the Risk of
Bias in Non-Randomized Studies - of Interventions (ROB-
INS-I), which provides structured domain-level judgments
for 7 bias domains, including confounding, selection of
participants, classification of interventions, missing data, and
outcome measurement.

For all tools, domain-level judgments were assigned
according to published guidance or tool-specific documenta-
tion. Risk-of-bias assessments were conducted independently
by multiple assessors, and any discrepancies were resolved
through discussion, with arbitration applied when consen-
sus could not be reached. Domain-level ratings were then
synthesized into an overall judgment (low, unclear, or high
risk of bias) based on the decision rules recommended for
each tool.

Visualization of risk-of-bias judgments was performed
using robvis [16], an R package and web application that
supports structured display of traffic-light plots and summary
plots.

Results
Overview
We synthesized the findings from 42 original research articles
on cardiovascular digital twins. The PRISMA flow diagram
of the study selection process is presented in Figure 1.
The results were structured around 11 predefined RQs,
which were organized into 6 thematic domains: technologi-
cal foundations, data infrastructure and visualization, clinical
applications and conditions, clinical impact, implementa-
tion challenges, and ethical considerations. Each subsection
follows a format: overview, key insights, and interpretation.
For each RQ, we present summary patterns and cite represen-
tative studies in the main text. The complete mapping of all
studies to the corresponding RQ categories is provided in
Multimedia Appendix 4, and the mapping from raw extrac-
tion values to the harmonized categories used in the analyses
is provided in Multimedia Appendix 5.

Funding sources were reported for a subset of studies and
were most often public or academic, with a smaller num-
ber supported by mixed public-foundation or public-industry
collaborations and relatively few funded solely by industry.
Study-level funding details are summarized in Multimedia
Appendix 4.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram illustrating the systematic selection
process for cardiovascular digital twin studies. A total of 330 records were retrieved from 5 major databases and screened using predefined eligibility
criteria. After removal of duplicates and exclusion of irrelevant or nonoriginal articles, 42 studies were included in the final synthesis for qualitative
and quantitative analyses.

Technological Foundations (RQ1-RQ4)
We outline the core technical elements of cardiovascular
digital twin systems, focusing on modeling strategies (RQ1),
types of mechanistic models (RQ2), ML applications (RQ3),
and open-source availability (RQ4). Together, these RQs
characterized how digital twins were constructed, personal-
ized, and shared, revealing trends in hybrid modeling, the
integration of AI, and the challenges in reproducibility.

RQ1: What Primary Modeling Approach is
Used to Develop Digital Twins?
Overview
All 42 studies were classified according to their dominant
modeling approach: mechanistic, hybrid, or data-driven.
These categories reflect the computational core of digital

twins, ranging from physics-based simulation to statistical
learning and their integration.

Key Insights
The key insights are as follows:

• Mechanistic models were the most common (29
studies [8,11,17-43]), and they relied on physics-based
formulations (eg, finite element modeling [FEM],
electrophysiological simulation, and hemodynamic
flow analysis) to generate personalized physiological
representations.

• Data-driven models were noted in 7 studies [44-50],
and they were primarily based on statistical learning or
machine-learning approaches without explicit biophysi-
cal constraints.

• Hybrid approaches were the least common (6 studies
[51-56]), and they combined mechanistic frameworks
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with data-driven components, for example, using ML
to estimate parameters, extract imaging features, or
accelerate computational solvers.

Interpretation
The predominance of mechanistic approaches highlights
the central importance of physiological interpretability in
cardiovascular digital twin development. Studies involving
these approaches focus on replicating biophysical behavior
with high fidelity, supporting diagnostic and interventional
simulation tasks.

Data-driven twins, while less common, demonstrate
growing interest in leveraging large clinical datasets for
prediction, classification, and risk estimation. Their scope
is more limited in scenarios requiring detailed physiological
realism.

Hybrid methods illustrate emerging strategies that balance
accuracy and computational efficiency. In studies involving
these approaches, ML is commonly used to tune physiolog-
ical parameters, derive boundary conditions from imaging
or ECG data, or build surrogate models that reduce the
computational cost of mechanistic solvers. In a subset of
hybrid digital twin studies [51-56], ML components were
typically embedded within a mechanistic framework rather
than used in isolation. Across these studies, we observed
3 main integration patterns. First, ML is used for param-
eter tuning and personalization of mechanistic models,
for example, by estimating subject-specific parameters or
boundary conditions that are then supplied to a physics-based
simulator. Second, ML algorithms are applied for feature
extraction from raw clinical data, such as imaging or ECG
signals, and the extracted features are subsequently used to
initialize or constrain the mechanistic model. Third, in a
small number of cases, ML serves as a surrogate or comple-
mentary model that approximates the behavior of a more
complex mechanistic solver or is combined with mechanis-
tic equations in a joint statistical-mechanistic framework.
Together, these hybrid strategies illustrate how data-driven
methods can enhance mechanistic digital twins by improv-
ing personalization, leveraging high-dimensional data, and
reducing computational cost.

RQ2: If the Model is Mechanistic, What
Specific Model Type is Used?
Overview
Across the 42 included studies, we identified multiple types
of mechanistic models used within cardiovascular digital twin
frameworks. Because individual studies often combined more
than one formulation, we classified mechanistic components
into 9 categories based on their predominant mathematical
and physiological characteristics.

Key Insights
The key insights are as follows:

• Electrophysiology models were the most common
(19 studies [11,17,18,20,21,25,27,28,30,34,35,37,39,
41,43,44,46,51,54]). These models typically used

monodomain, bidomain, or related reaction-diffusion
formulations to simulate cardiac electrical activation,
sometimes coupled to downstream mechanical effects.

• FEM-based structural or biomechanical models
were used in 10 studies [8,18,19,26,27,29-31,33,37]
to represent myocardial or vascular deformation,
geometry, and stress-strain behavior.

• Electromechanical models, which explicitly couple
electrical activation with tissue mechanics, were
identified in 8 studies [22,26,30,32,33,52,53,55]. They
supported integrated simulation of excitation-contrac-
tion processes.

• Simplified or system-level models, which are most
often lumped-parameter formulations, were noted in
7 studies [24,29-31,33,36,53]. They provided compact
descriptions of global hemodynamics or chamber-level
dynamics, particularly when large-scale or long-dura-
tion simulations were required.

• Multiscale models were reported in 7 studies [11,22,
30,33,41,44,53], linking processes across spatial or
temporal scales (eg, from cellular electrophysiology to
organ-level function).

• Computational fluid dynamics (CFD) models were used
in 3 studies [40,42,55] to simulate blood flow and
pressure distributions in chambers or great vessels. An
additional 4 studies [19,23,24,56] used other mech-
anistic formulations (eg, specialized anatomical or
biophysical models), and 1 study [42] used a surrogate
mechanistic model that approximated a more complex
solver. In 1 study [38], mechanistic modeling was
reported, but the specific model type was not clearly
described.

Interpretation
Taken together, the results show that electrophysiology-
focused models form the backbone of mechanistic digital
twin development in cardiology, with FEM-based structural
models, lumped-parameter and multiscale formulations, and
CFD models used in complementary roles. This diversity of
model types illustrates how digital twin frameworks combine
detailed biophysical fidelity with system-level abstractions to
address specific clinical questions and RQs.

RQ3: If the Model Includes ML or AI, What
Specific Algorithms are Applied?
Overview
Among the 42 reviewed studies, some explicitly reported
using ML or AI techniques within the digital twin framework,
while in others, the use or type of ML was absent or not
clearly specified. Because several studies combined more
than one method, we grouped algorithms into broad families,
including DL, Bayesian methods, optimization algorithms,
classical (statistical) ML, and other ML approaches.

Key Insights
The key insights are as follows:

• DL was the most frequently reported family of
methods (9 studies [27,34,44-46,48,49,53,54]). These
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approaches included architectures, such as convolu-
tional neural networks, neural operators, latent neural
ordinary differential equation models, and related deep
architectures, used for tasks like feature extraction,
representation learning, or surrogate modeling.

• Bayesian methods were used in 5 studies [17,19,25,
37,51], typically in the form of approximate Baye-
sian computation, Bayesian optimization, or Gaus-
sian process–based models for probabilistic parameter
estimation and uncertainty quantification.

• Optimization algorithms were noted in 4 studies [19,
21,36,51]. These approaches included gradient-based
schemes and metaheuristics that were used to tune
model parameters, personalize simulations, or search
over high-dimensional design spaces; in some cases,
these optimizers were tightly integrated with Bayesian
frameworks.

• Classical ML methods were identified in 2 studies
[50,56]. These approaches included techniques, such
as decision tree and logistic or linear regression, to
model interpretable relationships between inputs and
outcomes.

• Regression was explicitly highlighted as the primary
approach in 1 of the studies [50]. One study used
other ML strategies that did not fit neatly into the
above categories but still relied on data-driven learning
to support digital twin construction or personalization
[46].

Interpretation
Overall, DL has emerged as the dominant explicitly reported
ML family in cardiovascular digital twin research, support-
ing tasks such as feature extraction, surrogate modeling, and
high-dimensional inference. Bayesian and optimization-based
methods play a complementary role by enabling parameter
estimation and uncertainty-aware personalization. Classical
ML and regression, although less common, provide more
interpretable models in selected use cases.

Figure 2 provides an integrated visualization of how
primary modeling approaches, mechanistic model types, and
ML or AI families co-occur across the included studies.

Figure 2. Relationships among modeling approaches, mechanistic model types, and machine learning (ML) or artificial intelligence (AI) methods in
cardiovascular digital twin studies. Sankey diagram summarizing links among primary modeling approaches (research question [RQ] 1), mechanistic
model types (RQ2), and ML or AI algorithm families (RQ3) across the 42 original research articles on cardiovascular digital twins included in this
systematic review. The left column shows the dominant modeling approach for each study (mechanistic, hybrid, or data-driven). The middle column
groups mechanistic model types into electrophysiology, finite element modeling (FEM), lumped parameter, electromechanical, computational fluid
dynamics (CFD), other mechanistic models, and “not reported.” The right column shows ML or AI families (deep learning, Bayesian methods,
optimization algorithms, classical ML, regression, other ML, and “type of ML not reported”). The width of each flow is proportional to the number of
studies combining the corresponding categories.

RQ4: Is the Framework or Model That is
Created or Used Open-Source?
Overview
We evaluated the extent to which cardiovascular digital
twin frameworks were shared as open-source resources.

Code availability is a key indicator of scientific transpar-
ency and reproducibility, enabling independent validation and
extension by other researchers and clinicians.

Key Insights
The key insights are as follows:
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• Across the 42 included studies, 16 explicitly repor-
ted that their framework or model was available
as open-source code [17-20,25,26,30,35,37,38,41,48,51,
53,54,56].

• Two studies clearly stated that the code was not
publicly released or that the implementation was
proprietary [22,39].

• For the remaining 24 studies, code availability was
either not mentioned or not described in sufficient detail
to determine whether the implementation was accessi-
ble. Thus, less than half of the studies (16/42, 38%)
provided explicit evidence of open-source sharing, and
in many cases, information on code availability was
incomplete.

Interpretation
Despite increasing attention to reproducibility and open
science, most studies in this review did not make their
digital twin implementations publicly available. A lack
of open-source code hinders transparency, reproducibility,
and reusability. The few repositories that were shared
provide valuable resources and serve as exemplars for future
cardiovascular digital twin research.
Data Infrastructure and Visualization
(RQ5 and RQ6)
The design and utility of cardiovascular digital twin systems
depend heavily on how patient-specific data are structured,
how outputs are visually communicated, and who the
intended users are. This section addresses RQ5 and RQ6
by examining the types of data used to build or personalize
digital twins, the formats used to present model outputs,
and the target users of these visualizations. Together, these
elements shaped the usability, interpretability, and clinical
relevance of digital twin systems in practice.

RQ5: What Types of Patient-Specific Data are
Used to Build or Personalize Digital Twins?
Overview
Patient-specific data underpin cardiovascular digital twin
systems by enabling individual-level modeling. We explored
the distinct categories of data used to personalize these
models, ranging from electrical signals and anatomical
imaging to omics and wearable-derived data. To facili-
tate interpretation, the data were grouped into consistent,
semantically meaningful categories.

Key Insights
The key insights are as follows:

• Imaging data were the most commonly used
(32 studies [8,11,17-19,21,22,24-27,29-31,33-40,42-44,
46,48,49,51,53-55]). These data typically included
modalities, such as MRI, CT, and other structural
imaging, used to reconstruct patient-specific anatomy.
Echocardiography was explicitly reported in 2 of these
studies as a dedicated imaging source.

• Signal-based electrical data, primarily ECG, were used
in 18 studies [8,17,21,25,27,33,36-39,43,46,48-51,53,
54], reflecting its central role in modeling cardiac
electrophysiology and conduction abnormalities.

• Vital signs were used in 12 studies [17,24,26,28,29,31,
33,45,48,49,53,55], and demographics, such as age and
sex, were reported in 9 studies [17,24,27,28,33,45-48],
often to support model initialization, risk stratification,
or cohort characterization.

• More detailed clinical information appeared in several
categories: omics data were used in 4 studies [22,23,49,
55], lab results were used in 4 studies [22,28,49,55],
and general clinical data (such as clinical histories and
visit summaries) were used in 3 studies [49,52,55].
Diagnosis [33,47,48] and treatment-related data [33,47,
48] (eg, information on interventions or therapies) were
each reported in 3 studies.

• Sensor-based and longitudinal monitoring information
was less common: 3 studies used data from sensors [46,
49,55], and 2 studies used activity tracker data [45,49],
illustrating the early integration of wearable or home-
based measurements into digital twin personalization.
Synthetic patient data were explicitly used in 1 study
[56].

Interpretation
Overall, there is a strong reliance on imaging and ECG
data to define anatomy and electrophysiological behavior in
cardiovascular digital twins, complemented by vital signs and
demographic information for basic personalization. Omics,
lab results, richer clinical records, and wearable or sensor-
derived data are beginning to appear but remain less common,
suggesting that truly multimodal, longitudinal personalization
is still emerging. The presence of synthetic and other less
conventional data sources indicates ongoing experimentation
with alternative data strategies.

RQ6: What is the Primary Format Used to
Visually Present Digital Twin Outputs?
Overview
We examined how digital twin outputs were visualized in
cardiovascular studies, an essential aspect for interpretation,
user interaction, and eventual clinical integration. Each study
could use more than one visualization format, so outputs
were classified into standard categories such as static figures,
anatomical renderings, tables, dashboards, and interactive
media.

Key Insights
The key insights are as follows:

• Static figures were the most common visualization
format (41 studies [8,11,17-47,49-56]). These typically
included plots, error curves, comparative graphics, and
screenshots of simulations, and were primarily designed
for inclusion in scientific publications.

• Two- or three-dimensional anatomical views were
reported in 27 studies [8,11,17-19,21,22,24-27,29-31,
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33-35,37,39,40,42-44,46,51,54,55], where patient-spe-
cific geometries or simulated fields (eg, activation
times, strain, and flow patterns) were mapped onto
cardiac or vascular structures. These views served to
visually link model predictions to underlying anatomy.

• Tabular formats were used in 7 studies [19,22,24,35,36,
45,49] to report numerical outputs such as performance
metrics, parameter values, and summary statistics.

Interpretation
Overall, visualization of cardiovascular digital twins remains
dominated by static, publication-oriented formats such as
figures and anatomical snapshots, with limited support for
dynamic, interactive, or dashboard-based exploration. While
anatomical views help contextualize outputs in patient-spe-
cific geometry, the scarcity of dashboards, animations, and
interactive interfaces suggests that user-centric and real-time
visualization capabilities are still underdeveloped. Enhancing
interactive and clinically oriented visualization tools may be
crucial for translating digital twins from research prototypes
into practical decision-support systems.
Clinical Applications (RQ7 and RQ8)
We explored how digital twins were applied in clinical
cardiology (RQ7) and which cardiovascular conditions they
targeted (RQ8). It highlighted current use cases, such as
diagnosis, planning, and monitoring, and categorized the
conditions based on thematic grouping identified during
full-text analysis.

RQ7: What is the Main Clinical Application or
Use Case of Digital Twin Systems?
Overview
We explored the primary clinical applications of cardiovas-
cular digital twin systems, revealing the core motivations
behind their development and deployment. Use cases ranged
from therapy planning and risk prediction to monitoring, drug
testing, and more exploratory clinical applications. Individual
studies could contribute to multiple application categories.

Key Insights
The key insights are as follows:

• Therapy planning was the most common application
(28 studies [8,11,17,19,20,22-25,29-34,36-39,41,45-47,
49,51,54-56]). In these studies, digital twins were used
to support the selection, personalization, or optimiza-
tion of interventions, including device configuration,
ablation strategies, or other patient-specific treatment
plans.

• Risk prediction was noted in 11 studies [20,28,40,41,
46-50,52,55], where digital twins were used to estimate
the likelihood of adverse events, treatment responses, or
disease trajectories, often to support patient stratifica-
tion. Diagnosis-focused applications were identified
in 7 studies [11,45,46,48-50,54], using digital twins
to assist in identifying underlying pathophysiology or
classifying clinical conditions.

• Surgical and device simulation was reported in 6
studies [36,38,42,46,51,55], in which digital twins
provided virtual testbeds to explore procedural
strategies or evaluate device performance in patient-
specific anatomies. Another 6 studies used digital twins
for drug testing [17,20,28,32,36,37].

• Monitoring applications were noted in 6 studies [45,48-
50,52,55], where digital twins contributed to disease
tracking or follow-up by integrating longitudinal data
or repeated assessments. Disease progression modeling
was explicitly highlighted in 3 studies [36,42,55], and a
single study focused primarily on prognosis [55].

Interpretation
Overall, cardiovascular digital twins are most frequently
positioned as tools for therapy planning and risk predic-
tion, emphasizing their role in personalizing and optimizing
clinical interventions. Diagnosis, surgical or device simula-
tion, drug testing, and monitoring collectively demonstrate
a broad range of applications along the care pathway, from
early risk assessment to procedural planning and follow-up.
As digital twin technologies mature, a clearer definition
and reporting of clinical applications will be important for
understanding their real-world impact.

RQ8: What Cardiovascular Conditions Are
Studied Using Digital Twin Systems?
Overview
We examined the range of cardiovascular conditions
addressed by digital twin systems, providing a disease-
centered perspective on where digital twin technologies
are currently being applied. Conditions were grouped into
clinically meaningful categories, and the classification was
reviewed by a physician on the research team to ensure
clinical relevance and consistency.

Key Insights
The key insights are as follows:

• Arrhythmia was the most frequently studied condition
(13 studies [8,11,18,20,25,28,30,34,38-41,43]). The
studies predominantly focused on atrial fibrillation
and other rhythm disorders, reflecting the suitability
of digital twins for simulating electrophysiological
mechanisms and guiding rhythm-related interventions.

• Heart failure was investigated in 9 studies [33,36,
38,41,48,51-53,55], often in the context of global
cardiac function, ventricular remodeling, or device-
based therapies. Cardiomyopathies, including hypertro-
phic cardiomyopathy and other structural myocardial
diseases, were the primary focus in 5 studies [19,22,
32,35,44], where digital twins were used to explore
patient-specific mechanics and electrophysiology.

• Six studies centered on healthy or control populations
[17,43,46,49,54,56], using digital twins to represent
normal physiology, establish reference behaviors, or
provide baselines for comparison with diseased states.
Aortic disease was the focus in 3 studies [26,29,42],
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typically involving patient-specific modeling of the
aorta for flow, wall stress, or device evaluation.

Interpretation
The distribution shows a strong emphasis on arrhythmia
and heart failure, conditions in which digital twins can
leverage detailed electrophysiological and hemodynamic
modeling to support diagnosis, therapy planning, and risk
assessment. Cardiomyopathies, aortic disease, and valvular
disease are also emerging areas of application, particularly
where structural and flow abnormalities can be represen-
ted in patient-specific models. By contrast, hypertension,
atherosclerosis, and some other common cardiovascular

conditions are only sporadically represented, and several
studies do not clearly specify the underlying disease focus.
These gaps suggest opportunities for expanding digital
twin applications into a broader spectrum of cardiovascular
conditions and for improving the clarity of disease reporting
in future work.

Figure 3 summarizes how clinical applications are
distributed across cardiovascular conditions. As shown in
Figure 3, therapy planning and risk prediction are concentra-
ted in arrhythmia and heart failure, whereas other conditions
and applications are represented by only a small number of
studies, underscoring the uneven distribution of digital twin
work across CVDs.

Figure 3. Heatmap of cardiovascular conditions (research question [RQ] 8) versus clinical applications (RQ7) in cardiovascular digital twin studies.
Rows show the primary cardiovascular condition modeled (eg, arrhythmia, heart failure, cardiomyopathy, aortic and valve disease, hypertension,
atherosclerosis, general cardiovascular disease [CVD], healthy/control, and not reported). Columns show the main clinical applications (eg, diagnosis,
disease progression modeling, drug testing, monitoring, prognosis, risk prediction, surgical or device simulation, and therapy planning). Cell color
and numbers indicate how many of the 42 included studies reported each condition-application combination (darker cells indicate a higher number of
studies).

Impact on Clinical Practice (RQ9)
We identified the reported clinical benefits of cardiovascular
digital twin systems, including improved accuracy, personali-
zation, therapy planning, and patient outcomes. The findings
were organized into key impact categories to highlight where
digital twins showed practical value in care delivery.

RQ9: What Clinical Impacts are Reported as a
Result of Using Digital Twins?
Overview
We examined the concrete clinical or clinically relevant
impacts attributed to cardiovascular digital twin systems.
Rather than focusing on intended use alone, we captured

JMIR CARDIO Sarani Rad et al

https://cardio.jmir.org/2026/1/e78499 JMIR Cardio 2026 | vol. 10 | e78499 | p. 10
(page number not for citation purposes)

https://cardio.jmir.org/2026/1/e78499


reported effects where the use of a digital twin was descri-
bed as influencing decision-making, therapy, diagnostic
performance, or other aspects of care. Reported impacts
were grouped into categories such as improved decision-mak-
ing, therapy-related benefits, increased accuracy, and other
specific outcomes.

Key Insights
The key insights are as follows:

• Improved decision-making was the most frequently
reported impact (19 studies [22,24,28,30-34,36,38-41,
47-49,51,55,56]). In these cases, digital twins were
described as helping clinicians compare alternative
strategies, understand patient-specific mechanisms, or
select interventions with greater confidence.

• Therapy-related impacts were reported in 18 studies
[19,22-25,32,34,36,38-41,45,47-49,51,55], including
optimization of device settings, refinement of ablation
targets, adjustment of pharmacologic regimens, and

more tailored procedural planning based on virtual
simulations.

• Increased accuracy was explicitly identified in 6 studies
[31,45,48,49,54,55], referring to improvements in
predictive performance, better correspondence between
simulations and measured clinical data, or more
faithful reproduction of patient-specific physiology.
Two studies [49,50] reported a faster diagnostic
process, where digital twin–supported workflows were
associated with quicker identification or clarification of
clinical conditions.

Figure 4 illustrates how reported clinical impacts are
distributed across cardiovascular conditions. Improved
decision-making and therapy-related impacts were concen-
trated in arrhythmia and heart failure, whereas many other
condition-impact combinations were represented by only one
or two studies, highlighting the uneven evidence base across
disease areas.

Figure 4. Heatmap of cardiovascular conditions (research question [RQ] 8) versus reported clinical impacts (RQ9) in cardiovascular digital twin
studies. Rows represent the primary cardiovascular condition modeled by the digital twin (eg, arrhythmia, heart failure, cardiomyopathy, aortic and
valve disease, hypertension, atherosclerosis, general cardiovascular disease [CVD], healthy/control, and not reported). Columns represent impact
categories reported by study authors (faster diagnosis, improved decision-making, increased accuracy, impact not reported, other impact, and
therapy-related impact). Cell color and numbers indicate how many of the 42 included studies reported each condition-impact combination (darker
cells indicate a higher number of studies).
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Interpretation
The most commonly reported benefits of cardiovascular
digital twins relate to improved clinical decision-making and
therapy-related impacts, suggesting that these systems are
beginning to influence how clinicians choose and personalize
interventions. Explicit gains in accuracy and diagnostic speed
are less frequently reported but point toward the quantita-
tive advantages of model-based approaches when they are
carefully evaluated. At the same time, the substantial number
of studies with no clearly articulated clinical impact indi-
cates that much of the current literature remains focused on
technical feasibility and validation rather than demonstrated
downstream effects on care processes or patient outcomes.
Strengthening the evidence base around measurable clinical

benefits, such as improved decision quality, optimized
therapy, and better outcomes, will be essential for wider
clinical adoption.

Figure 5 shows that improved decision-making is
the dominant reported impact across most cardiovascular
conditions, particularly heart failure and arrhythmia, and that
these impacts are almost always communicated through static
figures and 2D or 3D anatomical views rather than dash-
boards, animations, or interactive interfaces. Therapy-related
impacts and gains in accuracy are more sparsely reported
and similarly rely on conventional publication-style visualiza-
tions, underscoring the limited development of user-facing,
real-time visual tools, even in high-risk clinical scenarios.

Figure 5. Relationships among cardiovascular conditions, reported clinical impacts, and visualization formats in cardiovascular digital twin studies.
Sankey diagram summarizing links among cardiovascular conditions (research question [RQ] 8), reported clinical impacts (RQ9), and primary
visualization formats (RQ6) across the 42 original research articles on cardiovascular digital twins included in this systematic review. The left column
shows the main conditions modeled by the digital twins (eg, heart failure, arrhythmia, valve disease, cardiomyopathy, hypertension, atherosclerosis,
general cardiovascular disease [CVD], and healthy/control populations). The middle column displays impact categories reported by the authors (eg,
improved decision-making, therapy-related impact, increased accuracy, faster diagnosis, and other impact). The right column shows the dominant
visualization formats used to present model outputs (static figures, 2D/3D anatomical views, tabular displays, analytics dashboards, animated/video
outputs, and interactive interfaces). The width of each flow is proportional to the number of studies combining the corresponding categories.

Barriers to Implementation and Ethical
Considerations (RQ10 and RQ11)
We examined the key challenges limiting the adoption
of cardiovascular digital twins, including technical barriers
(RQ10) and ethical or legal concerns (RQ11). These issues
highlighted the need for improved scalability, transparency,
and responsible use in clinical settings.

RQ10: What Limitations or Practical and
Technical Barriers are Described?
Overview
We identified the limitations and implementation barriers
of cardiovascular digital twin systems as reported by the
included studies. Rather than listing every individual issue,
reported limitations were grouped into conceptually mean-
ingful categories, such as model assumptions, computa-
tional constraints, data-related challenges, and integration
or usability problems. This categorization helped highlight
systemic obstacles that recur across the field.
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Key Insights
The key insights are as follows:

• Model assumptions and structural simplifications were
the most frequently cited limitations (26 studies [8,11,
17,19-22,24,25,27-33,35,36,39,41,43,44,46,47,51,53]).
These concerns included oversimplified anatomy
or physiology, restrictive boundary conditions, and
reduced model complexity that may limit generalizabil-
ity or omit important mechanisms.

• Computational cost was highlighted in 21 stud-
ies [11,17,21,22,26,27,29-31,33,36,37,39,41,42,46,49,
51,53,54,56], where authors noted long simulation
times, high hardware requirements, or overall computa-
tional burden that can impede large-scale studies and
real-time or near–real-time clinical use.

• Data-related challenges were prominent, with 16 studies
[19,22,25,27-30,36,39,40,43,45,47,50,55,56] reporting
issues with data quality or availability, such as
incomplete or noisy clinical inputs, limited access to
high-resolution or longitudinal data, and difficulties in
acquiring truly personalized datasets. Limited valida-
tion was also mentioned in 16 studies [24,25,27-29,
31,33-36,39,40,45,47,53,55], reflecting concerns about
small sample sizes, restricted cohorts, synthetic data, or
a lack of robust testing in real-world clinical environ-
ments.

• More specific barriers included a lack of real-time
performance in 5 studies [33,42,50,54,55], indicating
that even when models were accurate, their latency or
compute demands were not compatible with time-sensi-
tive clinical workflows. Workflow integration problems
were identified in 4 studies [30,47,51,55], focusing
on the challenges of embedding digital twins into
existing clinical systems and processes. Clinician
usability challenges were noted in 3 studies [45,49,55],
where interfaces or outputs were considered difficult
to interpret or not well aligned with clinical practice.
High infrastructure cost was noted in 2 studies [49,53],
and data security or privacy concerns were explicitly
mentioned in 1 study [49].

Interpretation
The most common limitations—strong model assumptions,
high computational cost, and data and validation con-
straints—reflect the technical and methodological complex-
ity of deploying cardiovascular digital twins in practice.
Simplifying assumptions and limited data can undermine
generalizability, while computational burden and lack of
real-time performance can restrict clinical usability. Integra-
tion issues, usability challenges, infrastructure demands, and
security concerns, though mentioned less often, highlight
important practical barriers that will become more pressing
as digital twins move closer to clinical deployment. Address-
ing these limitations through improved model design, better
data infrastructure, efficient algorithms, and user-centered

integration will be essential for scalable, clinically viable
digital twin systems.

RQ11: What Legal, Ethical, or Data
Governance Issues are Raised Regarding
Digital Twins?
Overview
We explored the ethical, legal, and data governance
concerns raised in studies involving cardiovascular digi-
tal twin systems. Potential issues included privacy protec-
tion, regulatory compliance, informed consent, algorithmic
transparency, and fairness. Reported concerns were grouped
into categories to highlight common themes and gaps in
current practice.

Key Insights
The key insights are as follows:

• Only a small subset of studies explicitly discussed
legal, ethical, or governance issues. Privacy and data
protection were the most frequently mentioned topics,
identified in 4 studies [47,49,50,55], with references
to compliance frameworks, such as General Data
Protection Regulation (GDPR) and Health Insurance
Portability and Accountability Act (HIPAA), and
concerns about safeguarding sensitive patient data in
the context of high-dimensional digital representations.

• Some studies raised other specific issues. Two studies
discussed ethical or legal challenges in general terms
[30,47], while another identified potential algorithmic
bias, described problems or open questions around
informed consent, and highlighted concerns about
model transparency and the need for explainable or
interpretable digital twin behavior [55].

Interpretation
Overall, explicit discussion of legal, ethical, and data
governance aspects remains limited in the cardiovascular
digital twin literature. While privacy and regulatory compli-
ance are beginning to appear as concrete concerns, far fewer
studies engage with broader questions around algorithmic
bias, transparency, informed consent in the context of
complex modeling, or downstream legal responsibilities. As
digital twin systems move closer to clinical deployment and
real-world decision support, more systematic attention to
these dimensions, including fairness, accountability, liability,
and data stewardship, will be critical to ensure trustworthy
and responsible adoption.
Risk of Bias Assessment
The risk of bias was assessed for all included studies
using the tool corresponding to the underlying study design.
Among the 42 studies evaluated, 38 were computational or
simulation-based studies assessed using the custom model-
ing checklist [8,11,17-38,40-46,48,51-56], 2 were prediction-
modeling studies evaluated using the PROBAST [49,50],
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and 2 were observational cohort studies evaluated using the
ROBINS-I [39,47].

Table 2 summarizes the distribution of overall risk-of-bias
judgments across the 3 tools. For simulation and digital
twin modeling studies, “unclear” was the most frequent
overall rating (22/38, 58%), followed by “high risk” (16/38,
42%). The domains contributing most frequently to elevated

risk included data representativeness, validation strategy,
and sample size/overfitting. No modeling study received an
overall low-risk judgment, reflecting commonly observed
methodological limitations in data availability, external
validation, and reproducibility practices across computational
literature.

Table 2. Summary of overall risk-of-bias judgments across the included studies.
Tool Total studies (N=42), n Unclear risk, n (%) High risk, n (%)
Custom modeling checklist 38 22 (58) 16 (42)
PROBASTa 2 0 (0) 2 (100)
ROBINS-Ib 2 1 (50) 1 (50)

aPROBAST: Prediction Model Risk of Bias Assessment Tool.
bROBINS-I: Risk of Bias in Non-Randomized Studies - of Interventions.

Both prediction-modeling studies assessed with the PRO-
BAST were rated as having a high risk of bias, predomi-
nantly due to concerns in the analysis and outcome domains,
including insufficient handling of model calibration, unclear
predictor specification, and absence of prespecified analysis
protocols.

Among the 2 observational cohort studies evaluated using
the ROBINS-I, one was judged as having a high risk of bias,
primarily due to serious confounding and selective reporting,
while the other was rated as unclear.

Figures 6 and 7 present the traffic-light and summary
plots, respectively, for all 38 modeling studies assessed using

the custom modeling checklist. These visualizations highlight
consistent methodological limitations across key domains,
particularly external validation and representativeness of data
inputs. Traffic-light and summary plots for the PROBAST
and ROBINS-I assessments are provided in Figures 8 and 9,
respectively.

A structured visualization workflow was implemented
using the robvis tool, which standardizes the graphical
representation of domain-level and overall judgments and
supports transparent reporting of risk-of-bias evaluations.
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Figure 6. Risk of bias assessment (traffic-light plot) for modeling studies [8,11,17-38,40-46,48,51-56]. Traffic-light plot for the 38 simulation/digital
twin modeling studies assessed using the custom modeling checklist. Domain-level judgments are categorized as low, unclear, or high. The plot has
been generated using the robvis tool [16].
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Figure 7. Risk of bias assessment (summary plot) for modeling studies [8,11,17-38,40-46,48,51-56]. Summary plot for the 38 simulation/digital twin
modeling studies assessed using the custom modeling checklist. Domain-level judgments are categorized as low, unclear, or high. The plot has been
generated using the robvis tool [16].

Figure 8. Risk of bias assessment for prediction-modeling studies (Prediction Model Risk of Bias Assessment Tool [PROBAST]) [49,50]. Traffic-
light plot (A) and summary plot (B) for the 2 prediction-modeling studies evaluated using the PROBAST instrument. Judgments are shown across the
4 PROBAST domains (participants, predictors, outcome, and analysis) and the overall study-level rating. Visualizations are created using the robvis
tool [16].
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Figure 9. Risk of bias assessment for observational cohort studies (Risk of Bias in Non-Randomized Studies - of Interventions [ROBINS-I]) [39,47].
Traffic-light plot (A) and summary plot (B) for the 2 observational cohort studies evaluated using the ROBINS-I tool. Judgments are shown across
the 7 ROBINS-I bias domains and the overall risk-of-bias rating. Visualizations are created using the robvis tool [16].

Discussion
Principal Findings
This systematic review synthesized findings from 42 studies
and showed that cardiovascular digital twin technology
is progressing rapidly but remains largely preclinical and
methodologically heterogeneous. Most systems relied on
mechanistic models, with a smaller subset incorporating
explicit ML or hybrid mechanistic–data-driven designs.
Applications clustered around arrhythmia (13/42, 31%), heart
failure (9/42, 21%), and therapy planning (28/42, 67%), yet
relatively few studies reported real-world clinical deploy-
ment, rigorous validation (16/42, 38%), or patient-level
outcomes, underscoring the gap between technical innovation
and routine clinical use.

Across 11 RQs spanning modeling foundations, data
infrastructure, clinical applications, clinical impact, and
implementation challenges, the review identified steady
technical progress alongside persistent limitations in data
quality, external validation, usability, and ethical governance.
Our structured risk-of-bias assessment further highlighted
that most modeling and prediction studies were judged as
having unclear or high risk of bias, particularly in rela-
tion to data representativeness, validation strategies, and
analysis procedures. Together, these findings suggest that

cardiovascular digital twins are scientifically promising but
not yet ready for widespread clinical translation.
Technological Foundations and Modeling
Strategies
Mechanistic models form the backbone of current
cardiovascular digital twins. Electrophysiology, finite-ele-
ment structural modeling, lumped-parameter formulations,
multiscale frameworks, and CFD-based flow simulations
were frequently combined to capture different physiologi-
cal scales and processes. The predominance of mechanistic
approaches reflects the central importance of physiologi-
cal interpretability and explicit biophysical assumptions in
cardiology, where understanding causal mechanisms is often
as important as prediction performance.

Hybrid designs and explicit ML or AI integrations were
present but less common than might be expected given
the broader trends in digital health. Only a minority of
studies (18/42, 43%) clearly described ML algorithms,
with DL (9/42, 21%), Bayesian methods (5/42, 12%),
and optimization algorithms (4/42, 10%) used for tasks
such as parameter estimation, feature extraction, surrogate
modeling, and uncertainty quantification. Many other papers
referred to “ML” or “AI” without specifying algorithm
families or training procedures, limiting reproducibility and
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comparability. Open-source dissemination was also limited;
less than half of the studies (16/42, 38%) provided accessi-
ble code, constraining independent verification, reuse, and
benchmarking.

Data Infrastructure and Visualization
Personalization of cardiovascular digital twins relied heavily
on structural imaging (32/42, 76%) and electrical signals
(18/42, 43%). Imaging data (most often MRI or CT,
with occasional echocardiography) enabled patient-specific
anatomical reconstruction, while ECG and related electri-
cal measurements supported modeling of activation patterns
and conduction abnormalities. Vital signs (12/42, 29%) and
demographic variables (9/42, 21%) were commonly used as
basic covariates, but richer data sources appeared in only
a subset of studies (omics: 4/42, 10%; lab results: 4/42,
10%; detailed clinical records: 3/42, 7%; and wearable/sen-
sor streams: 4/42, 10%). This pattern suggests that many
digital twins remain anchored in traditional imaging and
electrophysiology pipelines, with multimodal, longitudinal
data integration still in an early stage.

Visualization practices were predominantly static and
publication-oriented. Most studies communicated digital twin
outputs through static figures (41/42, 98%), anatomical
overlays (27/42, 64%), or tables summarizing simulation
results (7/42, 17%). Only a few described dashboards,
dynamic animations, or interactive interfaces that would
support real-time exploration or clinical decision-making. As
a result, the “front end” of many digital twin systems remains
geared toward researchers rather than clinicians or patients,
which may hinder adoption even when the underlying models
are sophisticated.
Clinical Applications and Target
Conditions
Clinically, cardiovascular digital twins were most frequently
positioned as tools for therapy planning (28/42, 67%),
risk prediction (11/42, 26%), and monitoring (6/42, 14%),
with additional roles in diagnosis (7/42, 17%), surgical or
device simulation (6/42, 14%), and drug testing (6/42, 14%).
Conditions, such as atrial fibrillation and other arrhythmias
(13/42, 31%), heart failure (9/42, 21%), cardiomyopathy
(5/42, 12%), and aortic disease (3/42, 7%), were most
commonly represented, reflecting both their high burden
and the suitability of these conditions for simulation-based
assessment. Several studies (6/42, 14%) used digital twins to
model healthy or control populations, providing physiological
baselines and enabling comparison with diseased states.

At the same time, important cardiovascular domains
remain underrepresented. Hypertension, atherosclerosis,
congenital heart disease, and some valvular pathologies
appeared relatively rarely or were only indirectly addressed,
despite their major contribution to global cardiovascular
morbidity. Furthermore, in some studies (4/42, 10%),
the underlying clinical condition was not clearly speci-
fied, blurring the line between generic modeling exercises
and disease-focused digital twin applications. This uneven

coverage limits our ability to generalize digital twin findings
across the broader spectrum of CVD.
Impact on Clinical Practice
Reported clinical impacts aligned with the conceptual
promise of digital twins but were often indirect or inferred.
The most commonly cited benefits were improved decision-
making (19/42, 45%) and therapy-related impacts (18/42,
43%), including better selection of interventions, refined
device configurations, and more personalized procedural
planning. Some studies (6/42, 14%) reported increased
accuracy of predictions or simulations, and a small number of
studies (2/42, 5%) documented faster diagnosis or workflow
advantages.

However, very few studies (4/42, 10%) linked digi-
tal twin use to robust patient-level outcomes such as
mortality, hospitalization, and long-term symptom burden.
Most evidence came from retrospective analyses, in silico
comparisons, or small proof-of-concept applications rather
than prospective, real-world evaluations. Consequently, while
digital twins appear to enhance mechanistic understanding
and may plausibly improve decision quality, the causal
pathway from digital twin use to improved patient outcomes
remains largely hypothetical. This observation was reinforced
by the risk-of-bias assessments, which highlighted frequent
limitations in sample size, external validation, and outcome
measurement.
Barriers to Implementation and Ethical
Considerations
Several recurring barriers emerged across the included
studies. Strong model assumptions and structural simplifi-
cations, while often necessary for tractability, raise ques-
tions about generalizability to broader populations or
clinical settings. High computational cost and limited
real-time performance constrain scalability and integration
into time-sensitive workflows, particularly in acute care or
interventional environments. Data-quality issues, including
incomplete or noisy inputs and limited access to comprehen-
sive, longitudinal datasets, further restrict personalization and
increase uncertainty.

Workflow integration and clinician usability remain
significant challenges. Only a minority of studies (4/42,
10%) described how digital twin systems might be embed-
ded within electronic health records, imaging systems, or
existing decision-support tools, and even fewer studies (3/42,
7%) reported formal usability testing with clinicians. Ethical,
legal, and governance issues were discussed explicitly in
only a small subset of articles (4/42, 10%), primarily in
relation to privacy and data protection frameworks such as
GDPR and HIPAA. Isolated studies mentioned algorithmic
bias, informed consent, or transparency concerns (1/42, 2%),
but systematic engagement with liability, accountability, data
ownership, and equity was rare, despite their importance for
future clinical deployment.
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Sources and Implications of
Heterogeneity
Across the included studies, we observed substantial
heterogeneity in how cardiovascular digital twins were
conceptualized, implemented, and evaluated. This variability
spanned multiple dimensions, including the definition and
scope of the “digital twin,” the underlying modeling strategies
(eg, electrophysiology, finite-element, lumped-parameter,
multiscale, CFD, and hybrid ML-mechanistic designs), the
types and combinations of data modalities used for personali-
zation, the clinical applications and disease targets, and the
choice of validation approaches and outcome metrics. As a
result, the findings are difficult to compare directly across
studies, and a quantitative synthesis or meta-analysis is not
appropriate. This heterogeneity also limits the generalizabil-
ity of individual results and makes it challenging to derive
standardized performance expectations for cardiovascular
digital twins. Future work will benefit from clearer defini-
tions, minimum reporting standards, and shared benchmarks
to enable a more systematic comparison and aggregation of
evidence.
Implications and Future Directions
The findings of this review suggest that cardiovascular
digital twins are technically promising but not yet consis-
tently validated, standardized, or integrated into routine care.
Heterogeneity in modeling approaches, data inputs, validation
strategies, and reporting practices limits comparability and
makes it difficult to draw firm conclusions about real-world
effectiveness.

Future work should focus on strengthening clinical
validation in real-world settings, ideally through prospec-
tive and multisite studies that link digital twin use to
patient outcomes and workflow changes. In parallel, clearer
definitions of what constitutes a digital twin; shared perform-
ance metrics; and minimum reporting standards for models,
data, and validation would support meaningful comparisons
and regulatory assessments. Methodological transparency
and user-centered design are also essential. Explainable
or interpretable modeling pipelines and clinician-oriented
interfaces are likely to be critical for trust and adoption.

Finally, ethical and equity considerations need to be
addressed proactively. Most existing studies draw on narrow
populations and rarely examine algorithmic bias, informed
consent for complex modeling, or long-term data gover-
nance. Future research should deliberately include diverse
populations and care settings; evaluate generalizability across
subgroups; and embed privacy protection, transparency, and
fair data use into the design and deployment of digital twin
systems. Closer collaboration with regulators and health care
organizations will be important to ensure that these techni-
cal and ethical advances translate into safe, accountable, and
clinically useful tools.
Limitations of This Review
While comprehensive, this review may have missed relevant
studies, especially studies published in non-English sources

or proprietary implementations outside academic literature.
Reporting heterogeneity also limited the comparability of
validation and outcome data. As the field evolves rapidly,
some emerging developments may not have been captured in
the included studies.

Although we conducted a structured risk-of-bias appraisal
using a custom modeling checklist for simulation studies,
the PROBAST for prediction models, and the ROBINS-I for
observational cohort studies, these tools were not originally
designed for all types of cardiovascular digital twin research
and required judgment-based adaptation. In addition, the
substantial heterogeneity in study designs, data sources, and
evaluation strategies precludes quantitative synthesis and
indicates that our risk-of-bias judgments should be interpreted
as broad indicators of methodological robustness rather than
definitive ratings for individual studies.

This review was based on searches of major biblio-
graphic databases and Google Scholar but did not include
dedicated, systematic searches of clinical trial registries
(eg, ClinicalTrials.gov), conference proceedings, or special-
ized grey-literature repositories (eg, dissertation or techni-
cal report databases). Although Google Scholar can index
some gray literature and conference outputs, our screening
was not designed to comprehensively capture these sources.
As a result, ongoing trials, conference-only presentations,
and nontraditionally published or proprietary digital twin
implementations may be underrepresented in this synthesis.

Finally, the review protocol was not registered on a public
platform, such as the Open Science Framework (OSF), which
may limit reproducibility and transparency. Future work
would benefit from prospective protocol registration to reduce
the risk of selective reporting and enhance methodological
rigor.
Conclusion
This systematic review mapped the technological, clinical,
and implementation landscape of cardiovascular digital twin
systems across 42 original studies. We found that most digital
twins are grounded in mechanistic modeling, with limited but
growing use of hybrid and AI-driven approaches. Personaliza-
tion relies predominantly on imaging and electrical signals,
and applications are concentrated in therapy planning, risk
prediction, and monitoring for arrhythmia and heart fail-
ure. Although the reported impacts on decision-making and
therapy optimization are promising, evidence for downstream
patient-level benefits remains sparse.

At the same time, substantial heterogeneity in model
architectures, data modalities, clinical use cases, and
validation strategies—combined with incomplete reporting
of algorithms, data, and code—limits comparability across
studies and precludes quantitative synthesis. Key barriers to
clinical translation include strong modeling assumptions; high
computational cost; constrained data quality and availability;
and limited real-time performance, workflow integration, and
usability. Ethical, legal, and governance issues are only rarely
addressed explicitly, with most attention focused on privacy
and data protection.
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Taken together, these findings suggest that cardiovascu-
lar digital twins are technically mature enough to support
sophisticated, patient-specific simulations but are not yet
ready for routine care. Realizing their potential for preci-
sion cardiology will require coordinated progress in standar-
dized evaluation and reporting, rigorous clinical and external
validation, user-centered and explainable design, robust data

governance, and engagement with regulators and health
systems. With the strengthening of these elements, digital
twins may evolve from exploratory research tools into trusted,
clinically integrated assets for individualized cardiovascular
diagnosis, risk assessment, and treatment planning.
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