Published on in Vol 6, No 1 (2022): Jan-Jun

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/31617, first published .
Comparing the Acceptance of Mobile Hypertension Apps for Disease Management Among Patients Versus Clinical Use Among Physicians: Cross-sectional Survey

Comparing the Acceptance of Mobile Hypertension Apps for Disease Management Among Patients Versus Clinical Use Among Physicians: Cross-sectional Survey

Comparing the Acceptance of Mobile Hypertension Apps for Disease Management Among Patients Versus Clinical Use Among Physicians: Cross-sectional Survey

Journals

  1. Fox M, Sidani S, Zaheer S, Butler J. Healthcare consumers' and professionals' perceived acceptability of evidence‐based interventions for rural transitional care. Worldviews on Evidence-Based Nursing 2022;19(5):388 View
  2. Schretzlmaier P, Hecker A, Ammenwerth E. Extension of the Unified Theory of Acceptance and Use of Technology 2 model for predicting mHealth acceptance using diabetes as an example: a cross-sectional validation study. BMJ Health & Care Informatics 2022;29(1):e100640 View
  3. Alsyouf A, Lutfi A, Al-Bsheish M, Jarrar M, Al-Mugheed K, Almaiah M, Alhazmi F, Masa’deh R, Anshasi R, Ashour A. Exposure Detection Applications Acceptance: The Case of COVID-19. International Journal of Environmental Research and Public Health 2022;19(12):7307 View
  4. Amuasi J, Agbogbatey M, Sarfo F, Beyuo A, Duah K, Agasiya P, Arthur A, Appiah L, Nguah S, Bockarie A, Ayisi-Boateng N, Boateng K, Adusei-Mensah N, Akpalu A, Ovbiagele B. Feasibility, acceptability, and appropriateness of a mobile health stroke intervention among Ghanaian health workers. Journal of the Neurological Sciences 2022;439:120304 View
  5. Khalid A, Dong Q, Chuluunbaatar E, Haldane V, Durrani H, Wei X. Implementation Science Perspectives on Implementing Telemedicine Interventions for Hypertension or Diabetes Management: Scoping Review. Journal of Medical Internet Research 2023;25:e42134 View
  6. Memenga P, Baumann E, Luetke Lanfer H, Reifegerste D, Geulen J, Weber W, Hahne A, Müller A, Weg-Remers S. Intentions of Patients With Cancer and Their Relatives to Use a Live Chat on Familial Cancer Risk: Results From a Cross-Sectional Web-Based Survey. Journal of Medical Internet Research 2023;25:e45198 View
  7. Wang M, Chen H, Gong C, Peng X, Zhong Y, Wu C, Luo Y, Wu Y. Understanding the use intention and influencing factors of telerehabilitation in people with rehabilitation needs: a cross-sectional survey. Frontiers in Public Health 2023;11 View
  8. Zhang M, Zhang H, Zhu R, Yang H, Chen M, Wang X, Li Z, Xiong Z. Factors affecting the willingness of patients with type 2 diabetes to use digital disease management applications: a cross-sectional study. Frontiers in Public Health 2023;11 View
  9. Eze C, Dorsch M, Coe A, Lester C, Buis L, Farris K. Facilitators and barriers to blood pressure telemonitoring: A mixed-methods study. DIGITAL HEALTH 2023;9 View
  10. Virtanen L, Kaihlanen A, Kainiemi E, Saukkonen P, Heponiemi T. Patterns of acceptance and use of digital health services among the persistent frequent attenders of outpatient care: A qualitatively driven multimethod analysis. DIGITAL HEALTH 2023;9 View
  11. Link E, Memenga P. Digitale, personalisierte Gesundheitsinformationsangebote von Ärzt*innen: Ergebnisse einer Befragung von Patient*innen und Ärzt*innen zu Akzeptanz und Anforderungen. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2023;66(9):982 View
  12. Dijkman E, ter Brake W, Drossaert C, Doggen C. Assessment Tools for Measuring Health Literacy and Digital Health Literacy in a Hospital Setting: A Scoping Review. Healthcare 2023;12(1):11 View
  13. Putri L, Kurniawan A, Mamesah M, Trisnawuri S. Perspektif Pasien Hipertensi Terhadap Implementasi Personal Health Record Berdasarkan Technology Acceptance Model. Jurnal Manajemen Kesehatan Yayasan RS.Dr. Soetomo 2023;9(2):332 View
  14. Tu J, Jia X. A Study on Immersion and Intention to Pay in AR Broadcasting: Validating and Expanding the Hedonic Motivation System Adoption Mode. Sustainability 2024;16(5):2040 View
  15. He Y, Zhu W, Wang T, Chen H, Xin J, Liu Y, Lei J, Liang J. Mining User Reviews From Hypertension Management Mobile Health Apps to Explore Factors Influencing User Satisfaction and Their Asymmetry: Comparative Study. JMIR mHealth and uHealth 2024;12:e55199 View
  16. Kreuzenbeck C, Schneider B, Brenner S, Koerber F. Rapid review on the incentives of digital health apps for physicians and psychotherapists: A German perspective. DIGITAL HEALTH 2024;10 View
  17. Longhini J, Rossettini G, Palese A. Digital health competencies and affecting factors among healthcare professionals: additional findings from a systematic review. Journal of Research in Nursing 2024;29(2):156 View
  18. He Y, Chen H, Xiang P, Zhao M, Li Y, Liu Y, Wang T, Liang J, Lei J. Establishing an Evaluation Indicator System for User Satisfaction With Hypertension Management Apps: Combining User-Generated Content and Analytic Hierarchy Process. Journal of Medical Internet Research 2024;26:e60773 View
  19. Zolfaqari Z, Ayatollahi H, Ranjbar F, Abasi A. Acceptance and use of mobile health technology in post-abortion care. BMC Health Services Research 2024;24(1) View